1 | Module LE_module
|
---|
2 |
|
---|
3 | USE GlobalDeclarations
|
---|
4 | USE PhysicalDeclarations
|
---|
5 | USE Profiles
|
---|
6 | Implicit None
|
---|
7 |
|
---|
8 | Private
|
---|
9 |
|
---|
10 | PUBLIC ConstructPolyTropeProfile
|
---|
11 |
|
---|
12 | CONTAINS
|
---|
13 |
|
---|
14 | SUBROUTINE ConstructPolyTropeProfile(Profile, Mass_Profile,P_profile,rho_profile,R_outer, poly_index, rho_cent, M_star, xi_last,a_scale,p_cent)
|
---|
15 | TYPE(ProfileDef), POINTER :: Profile
|
---|
16 | INTEGER :: nPoints
|
---|
17 | REAL :: R_outer, poly_index, rho_cent, xi_last
|
---|
18 | REAL :: h, a_scale, K, p_cent, dxi, xi, theta, dtheta, M_star
|
---|
19 | PARAMETER(pi=3.14159265359)
|
---|
20 |
|
---|
21 | a_scale=(-M_star/(4*pi*rho_cent*(xi_last**2)*dtheta_last))**(1/3)
|
---|
22 | R_outer=a_scale*xi_last
|
---|
23 | nPoints=max(R_outer/levels(maxLevel)%dx, 1000)
|
---|
24 | h=R_outer/nPoints !Computational step size
|
---|
25 |
|
---|
26 | IF (poly_index >= 5) THEN
|
---|
27 | IF (xi_last <= 0) THEN
|
---|
28 | IF (MPI_ID == 0) write(*,*) 'Error - must specify dimensionless truncation cutoff xi_last if the polytropic index > 5 in ConstructPolyTropeProfile'
|
---|
29 | STOP
|
---|
30 | END IF
|
---|
31 | ELSE
|
---|
32 | !Initilize solution at some small xi
|
---|
33 | xi=1e-4
|
---|
34 | theta=1-(xi**2.0)/6.0+(poly_index/120.0)*(xi**4.0)-(8.0*poly_index**2.0-5.0*poly_index)/(15120.0)*(xi**5.0)
|
---|
35 | dtheta=-xi/3.0+(poly_index/30.0)*(xi**3.0)-(8.0*poly_index**2.0-5.0*poly_index)/(2520.0)*(xi**5.0)
|
---|
36 |
|
---|
37 | !Initial step size
|
---|
38 | dxi=1e-2
|
---|
39 |
|
---|
40 | DO
|
---|
41 | theta_last=theta
|
---|
42 | xi_last=xi
|
---|
43 | dtheta_last=dtheta
|
---|
44 | CALL LE_Advance(xi, theta, dtheta, dxi)
|
---|
45 | IF (xi > 10d0) dxi=.01*theta/dtheta !adjust step size once were beyond xi=10 in case poly_index is just under 5...
|
---|
46 | IF (theta < 0d0) EXIT
|
---|
47 | END DO
|
---|
48 | dtheta = dtheta - (xi-xi_last)*(dtheta-dtheta_last)/dxi
|
---|
49 | xi = xi + (theta/(theta_last-theta))*dxi
|
---|
50 | theta=0d0
|
---|
51 | xi_last=xi
|
---|
52 | theta_last=theta
|
---|
53 | dtheta_last=dtheta
|
---|
54 | END IF
|
---|
55 |
|
---|
56 | !Construct Profile Object
|
---|
57 | CALL CreateProfile(Profile, nPoints, (/Mass_Field, Press_Field/), RADIAL)
|
---|
58 |
|
---|
59 |
|
---|
60 | !Calculate various other scales
|
---|
61 | a_scale=(-M_star/(4*pi*rho_cent*(xi_last**2)*dtheta_last))**(1/3)
|
---|
62 | p_cent=4*pi*ScaleGrav*(a_scale**2)*(rho_cent**2)*(theta_last**(poly_index+1d0))/(poly_index+1)
|
---|
63 |
|
---|
64 | !Start solution at small positive xi
|
---|
65 | xi=1e-4
|
---|
66 | theta=1-(xi**2.0)/6.0+(poly_index/120.0)*(xi**4.0)-(8.0*poly_index**2.0-5.0*poly_index)/(15120.0)*(xi**5.0)
|
---|
67 | dtheta=-xi/3.0+(poly_index/30.0)*(xi**3.0)-(8.0*poly_index**2.0-5.0*poly_index)/(2520.0)*(xi**5.0)
|
---|
68 |
|
---|
69 | !Integrate to first profile zone
|
---|
70 | dxi=.5*(h/a_scale)-xi
|
---|
71 | nsteps=ceiling(dxi/.01)
|
---|
72 | ddxi=dxi/nsteps
|
---|
73 | DO j=1,nsteps
|
---|
74 | CALL LE_Advance(xi, theta, dtheta, ddxi)
|
---|
75 | END DO
|
---|
76 |
|
---|
77 |
|
---|
78 | !Calculate step sizes for rest of profile
|
---|
79 | dxi=h/a_scale
|
---|
80 | nsteps=ceiling(h/a_scale/dxi)
|
---|
81 | ddxi=dxi/nsteps
|
---|
82 |
|
---|
83 | data(:,1)=h*(/(i,i=1,npoints)/)-.5*h
|
---|
84 | data(:,2:3:4)=0
|
---|
85 |
|
---|
86 | !Initialize profile
|
---|
87 | DO i=1, size(data, 1)
|
---|
88 | ! Convert from dimenionless to computational units
|
---|
89 | data(i,2)=rho_cent*theta**poly_index
|
---|
90 | data(i,3)=4*pi*ScaleGrav*(a_scale**2)*(rho_cent**2)*(theta**(poly_index+1d0))/(poly_index+1)
|
---|
91 | data(i,4)=-4*pi*(a_scale**3)*(xi**2)*rho_cent*dtheta/(Msun)
|
---|
92 | DO j=1,nsteps
|
---|
93 | !backup values for theta, xi, dtheta in case we overshoot
|
---|
94 | theta_last=theta
|
---|
95 | xi_last=xi
|
---|
96 | dtheta_last=dtheta
|
---|
97 |
|
---|
98 | !Advance to next position
|
---|
99 | CALL LE_Advance(xi, theta, dtheta, ddxi)
|
---|
100 | IF (theta < 0d0) EXIT
|
---|
101 | END DO
|
---|
102 | IF (theta < 0d0) EXIT
|
---|
103 | END DO
|
---|
104 |
|
---|
105 | !
|
---|
106 | dtheta = dtheta - (xi-xi_last)*(dtheta-dtheta_last)/ddxi
|
---|
107 | xi = xi + (theta/(theta_last-theta))*ddxi
|
---|
108 | theta=0d0
|
---|
109 |
|
---|
110 | M_star=4d0*pi*rho_cent*(R_star**3)*(-1d0/xi_last)*(dtheta)
|
---|
111 |
|
---|
112 | IF (MPI_ID == 0) THEN
|
---|
113 | print*,'final value for xi',xi
|
---|
114 | print*,'final value for theta',theta
|
---|
115 | print*,'final value for dtheta/dphi',dtheta
|
---|
116 |
|
---|
117 | print*, 'first root of phi at xi=',xi
|
---|
118 | print*, 'at this point dtheta/dt = ',dtheta
|
---|
119 | END IF
|
---|
120 | END SUBROUTINE ConstructPolyTropeProfile
|
---|
121 |
|
---|
122 | SUBROUTINE LE_Advance(xi,dtheta,poly_index,theta,h)
|
---|
123 | Real:: xi, dtheta, poly_index, theta, h
|
---|
124 | REAL :: k1(2), k2(2),k3(2),k4(2),g(2)
|
---|
125 |
|
---|
126 | g=(/theta, dtheta/)
|
---|
127 | k1=h*f(poly_index,xi,g)
|
---|
128 | k2=h*f(poly_index,xi+h/2.0,g+k1/2d0)
|
---|
129 | k3=h*f(poly_index,xi+h/2.0,g+k2/2d0)
|
---|
130 | k4=h*f(poly_index,xi+h,g+k3)
|
---|
131 |
|
---|
132 | g=g+(k1+2.0*k2+2.0*k3+k4)/6.0
|
---|
133 | theta=g(1)
|
---|
134 | dtheta=g(2)
|
---|
135 | xi=xi+h
|
---|
136 | end SUBROUTINE LE_Advance
|
---|
137 |
|
---|
138 |
|
---|
139 | !function f calculate the second order dtheta
|
---|
140 |
|
---|
141 | function f(poly_index,xi,g)
|
---|
142 | implicit none
|
---|
143 | real poly_index,xi,g(2), f(2)
|
---|
144 | f(1)=g(2)
|
---|
145 | f(2)=-g(1)**poly_index-2.0*g(2)/xi
|
---|
146 | end function f
|
---|