Changes between Version 9 and Version 10 of CollidingFlows


Ignore:
Timestamp:
06/30/11 13:56:31 (14 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • CollidingFlows

    v9 v10  
    3838|| [[Image(233_1_Sinks.png, width=200)]] || [[Image(233_4_Sinks.png, width=200)]] || [[Image(233_10_Sinks.png, width=200)]] || [[Image(233_20_Sinks.png, width=200)]] ||
    3939
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
     100
    40101== Discussion ==
    41102  All of these runs had poorly resolved cooling lengths (fractions of a cell).  The fastest growing modes were therefore at the nyquist frequency.  This is however much larger than the cooling length of the shocked layer.  I suspect that at higher resolutions the size of the condensations from the TI will much smaller and more prone to evaporation (or clump destruction) in the turbulent background flow...
     103
     104Given the density of the flow and its velocity, we can calculate the shocked materials temperature, cooling length, jeans length, etc...
     105
     106The cooling time is approximated by the shocked temperature as well as the instantaneous cooling rate at the shocked temperature and density.  [[latex($T_{cool}=\frac{nK_BT_{shock}}{(n\Gamma - n^2 \Lambda(T))(\gamma-1)}$)]]
     107
     108Here we've plotted the cooling time as a function of density and ram pressure (in units of Kelvin/cc)
     109[[Image(nPCoolingTime.png)]]
     110
     111We can then calculate the cooling length of the shock [[latex($L_{cool}=T_{cool} v_{shock}$)]] or the cooling length of the thermal instability [[latex($\lambda_{TI}=T_{cool} c_s \approx L_{cool}$)]] since [[latex($c_s \approx v_{shock}$)]]
     112Here are plots of the cooling length as well as the thermal instability length scale.
     113[[Image(nPCoolingLength.png, width=50%)]][[Image(nPTILength.png, width=50%)]]
     114
     115We can also calculate the free fall time for the condensations
     116[[latex($t_{ff}=\sqrt{\frac{3 \pi}{32 G \rho}}$)]] as well as the Jeans length [[latex($\lambda_J= c_s\sqrt{\frac{\pi}{G\rho}}$)]] plotted below
     117[[Image(nPFreeFallTime.png, width=50%)]][[Image(nPJeansLength.png, width=50%)]]
     118
     119
     120Finally given the density and temperature of the shocked material we can estimate the density contrasts of the thermally unstable clumps [[latex($\chi=T_{shock}/T_{eq}$)]] and then calculate the clump destruction time assuming it is of size [[latex($\lambda_{TI}$)]] embedded in a background flow of velocity [[latex($v_{shock}$)]].  [[latex($t_{cc}=\frac{\sqrt{\chi} \lambda_{TI}}{v_{shock}}$)]]
     121
     122[[Image(nPTIDestructionTime.png)]]
     123
     124Combining these two time scales gives a clump survivability [[latex($\xi=\frac{t_{cc}}{t_{ff}}$)]]
     125[[Image(nPTICollapsibility.png)]] which peaks at about .1
     126
     127Plotting the same quantity in n vs V space we have
     128[[Image(nVTICollapsibility.png)]]
     129we can see that optimal parameters are somewhere around a density of 20 and a velocity of 16 km/s although we still need clumps to survive for ~ 10 cloud crushing times before collapsing...  Of course if the wind turns off then clumps will be able to survive longer and collapse.  It might be better therefore to use finite wind durations...