Changes between Version 12 and Version 13 of CollidingFlows
- Timestamp:
- 06/30/11 14:09:49 (14 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
CollidingFlows
v12 v13 108 108 Here we've plotted the cooling time as a function of density and ram pressure (in units of Kelvin/cc) 109 109 110 [[Image(nPCoolingTime.png, width -400)]]110 [[Image(nPCoolingTime.png, width=300)]] 111 111 112 112 We can then calculate the cooling length of the shock [[latex($L_{cool}=T_{cool} v_{shock}$)]] or the cooling length of the thermal instability [[latex($\lambda_{TI}=T_{cool} c_s \approx L_{cool}$)]] since [[latex($c_s \approx v_{shock}$)]] 113 113 Here are plots of the cooling length as well as the thermal instability length scale. 114 114 115 [[Image(nPCoolingLength.png, width= 400)]][[Image(nPTILength.png, width=400)]]115 [[Image(nPCoolingLength.png, width=200)]][[Image(nPTILength.png, width=200)]] 116 116 117 117 We can also calculate the free fall time for the condensations 118 118 [[latex($t_{ff}=\sqrt{\frac{3 \pi}{32 G \rho}}$)]] as well as the Jeans length [[latex($\lambda_J= c_s\sqrt{\frac{\pi}{G\rho}}$)]] plotted below 119 119 120 [[Image(nPFreeFallTime.png, width= 400)]][[Image(nPJeansLength.png, width=400)]]120 [[Image(nPFreeFallTime.png, width=200)]][[Image(nPJeansLength.png, width=200)]] 121 121 122 122 123 123 Finally given the density and temperature of the shocked material we can estimate the density contrasts of the thermally unstable clumps [[latex($\chi=T_{shock}/T_{eq}$)]] and then calculate the clump destruction time assuming it is of size [[latex($\lambda_{TI}$)]] embedded in a background flow of velocity [[latex($v_{shock}$)]]. [[latex($t_{cc}=\frac{\sqrt{\chi} \lambda_{TI}}{v_{shock}}$)]] 124 124 125 [[Image(nPTIDestructionTime.png )]]125 [[Image(nPTIDestructionTime.png, width=300)]] 126 126 127 127 Combining these two time scales gives a clump survivability [[latex($\xi=\frac{t_{cc}}{t_{ff}}$)]] 128 128 129 [[Image(nPTICollapsibility.png) ]] which peaks at about .1129 [[Image(nPTICollapsibility.png), width=300]] which peaks at about .1 130 130 131 131 Plotting the same quantity in n vs V space we have 132 132 133 [[Image(nVTICollapsibility.png)]] 133 [[Image(nVTICollapsibility.png), width=300]] 134 134 135 we can see that optimal parameters are somewhere around a density of 20 and a velocity of 16 km/s although we still need clumps to survive for ~ 10 cloud crushing times before collapsing... Of course if the wind turns off then clumps will be able to survive longer and collapse. It might be better therefore to use finite wind durations...