Changes between Version 10 and Version 11 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/18/13 19:42:29 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v10 v11  
    7979For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update.  In this case we can solve the radiation energy equation:
    8080
    81 [[latex(\frac{\partial E}{\partial t}  = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]
     81[[latex(\frac{\partial E}{\partial t} = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B-cE) = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]
     82
     83where [[latex(\mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla E)]]
    8284
    8385Which we can discretize for (1D) as
     
    8688
    8789where
     90
     91[[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right ) )]]
     92
     93and
    8894
    8995[[latex(\epsilon^n_i=\frac{c\Delta t}{ \kappa^n_{0P,i}})]]
     
    144150
    145151== Constant radiative flux ==
    146 Having a contant radiative flux
    147 means that
    148 [[latex(\alpha_g \frac{\Delta x}{\Delta t} \left ( E^{n+1}_i-E^{n+1}_g \right ) = F_0)]]
     152To have a constant radiative flux we must have
     153[[latex(\alpha_g \left ( E^{n+1}_i-E^{n+1}_g \right ) = F_0 \frac{\Delta t}{\Delta x})]]
     154
     155Which we can solve for
     156[[latex(E^{n+1}_g = E^{n+1}_i - \frac{F_0 \Delta t}{\alpha_g \Delta x})]]
     157
     158but when we plug this into the coefficient matrix the terms with [[latex(\alpha_g)]] cancel and we just get [[latex(F_0 \frac{\Delta t}{\Delta x})]] in the source vector