Changes between Version 119 and Version 120 of FluxLimitedDiffusion
- Timestamp:
- 03/30/13 22:28:21 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v119 v120 389 389 which we can also write as 390 390 391 [[latex(\frac{\partial e}{\partial t} = f \left ( e ,E,\nabla E \right )392 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E - f \left ( e,E, \nabla E \right ) \right ) )]]391 [[latex(\frac{\partial e}{\partial t} = f \left ( e \right ) + g \left (E,\nabla E \right ) 392 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E - f \left ( e \right ) - g \left (e,E, \nabla E \right ) \right ) )]] 393 393 where 394 [[latex( f \left (e,E, \nabla E \right ) = -\kappa_{0P}(4 \pi B-cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]] 394 [[latex( f \left ( e \right ) = - 4 \pi \kappa_{0P} e )]] 395 and 396 [[latex( g \left (e,E, \nabla E \right ) = \kappa_{0P}(cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]] 395 397 396 398 Now we can linearize f about e,,0,, 397 [[latex( f \left ( e, E, \nabla E \right ) = f (\left e_0, E, \nabla E \right ) + \phi e)]]399 [[latex( f \left ( e \right ) = f \left ( e_0 ) + \partial{f}\partial{e} \left ( e - e_0 \right ) )]] 398 400 399 401 so that the first equation can be written as 400 402 401 [[latex(\frac{\partial e}{\partial t} = f \left ( e_0 ,E,\nabla E \right ) + \phi e)]]403 [[latex(\frac{\partial e}{\partial t} = f \left ( e_0 \right ) + \partial{f}\partial{e} \left ( e - e_0 \right ) )]] 402 404 403 405 and then discretized as 404 406 405 [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} f \left ( e_0,E*,\nabla E* \right ) \right ) + \bar{\psi} \phi e^n_i + \psi \phi e^{n+1}_i \right )]]406 407 which can be solved for [[latex(e^{n+1} = \frac{1}{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e _0,E*,\nabla E* \right ) \right ) )]]407 [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} \left ( f \left ( e_n \right ) + g(e_n,E^*,\nabla E^* \right ) + \right ) \left ( \left ( \bar {\psi} - 1 \right ) \phi \right ) e_n + \psi \phi e^{n+1}_i ]] 408 409 which can be solved for [[latex(e^{n+1} = \frac{1}{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) )]] 408 410 409 411 Then if we take the semi-discretized equation for E 410 412 411 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left ( e_0,E, \nabla E \right ) - \bar{\psi}\phi e^n_i -\psi \phi e^{n+1}_i )]]413 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left ( e^n_i \right ) + g \left (e^n_i,E, \nabla E \right ) + \bar{\psi}\phi e^n_i - \psi \phi e^{n+1}_i )]] 412 414 413 415 and then plugin the solution for e^n+1^,,i,, we get 414 416 415 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e_0,E, \nabla E \right ) - \bar{\psi}\phi e^n_i - \frac{\psi \phi }{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e_0,E *,\nabla E*\right ) \right ) )]]417 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e_0,E, \nabla E \right ) - \bar{\psi}\phi e^n_i - \frac{\psi \phi }{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e_0,E,\nabla E \right ) \right ) )]] 416 418 417 419 which simplifies to 418 420 419 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e_0,E*,\nabla E* \right ) \right ) )]] 420 421 422 423 === Expanding about e,,0,, === 421 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e_0,E,\nabla E \right ) \right ) )]] 422 423 424 === Expanding f about e,,0,, === 424 425 425 426 Of course even if the opacity is independent of energy and radiation energy, the above combined system of equations is still non-linear due to the dependence on Temperature of the Planck Function [[latex(B(T))]]