391 | | [[latex(\frac{\partial e}{\partial t} = f \left ( e \right ) + g \left (E,\nabla E \right ) |
392 | | [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E - f \left ( e \right ) - g \left (e,E, \nabla E \right ) \right ) )]] |
| 391 | [[latex(\frac{\partial e}{\partial t} = f \left ( e \right ) + g \left ( E,\nabla E \right ) )]] |
| 392 | [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left ( e \right ) - g \left (e,E, \nabla E \right ) )]] |
407 | | [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} \left ( f \left ( e_n \right ) + g(e_n,E^*,\nabla E^* \right ) + \right ) \left ( \left ( \bar {\psi} - 1 \right ) \phi \right ) e_n + \psi \phi e^{n+1}_i ]] |
408 | | |
409 | | which can be solved for [[latex(e^{n+1} = \frac{1}{1-\psi \phi} \left ( \bar{\psi} \phi e^n_i + f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) )]] |
| 407 | [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} \left ( f \left ( e_n \right ) + g \left ( e_n,E^*,\nabla E^* \right ) \right ) + \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e_n + \psi \phi e^{n+1}_i ]] |
| 408 | |
| 409 | which can be solved for [[latex(e^{n+1} = \frac{1}{1-\psi \phi} \left ( \left ( \bar{\psi} - 1 \right ) \phi e^n_i + f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) )]] |