Changes between Version 125 and Version 126 of FluxLimitedDiffusion
- Timestamp:
- 03/30/13 23:06:04 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v125 v126 405 405 and then discretized as 406 406 407 [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} \left ( f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) + \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i + \psi \phi e^{n+1}_i )]]407 [[latex(e^{n+1}_i-e^{n}_i = \frac{\Delta t}{\Delta x} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) + \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i + \psi \phi e^{n+1}_i )]] 408 408 409 409 which can be solved for 410 [[latex(e^{n+1}_i = \frac{1}{1 - \psi \phi} \left ( \left ( \bar{\psi} - 1 \right ) \phi e^n_i +f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) )]]410 [[latex(e^{n+1}_i = e^{n}_i + \frac{1}{1 - \psi \phi} \left ( f \left ( e^n_i \right ) + g \left ( e^n_i,E^*,\nabla E^* \right ) \right ) )]] 411 411 412 412 Then if we take the semi-discretized equation for E