Changes between Version 128 and Version 129 of FluxLimitedDiffusion
- Timestamp:
- 03/30/13 23:20:06 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v128 v129 412 412 Then if we take the semi-discretized equation for E 413 413 414 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \ left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i - \psi \phi e^{n+1}_i)]]414 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i - \psi \phi e^{n+1}_i \right ) )]] 415 415 416 416 and then plugin the solution for e^n+1^,,i,, we get 417 417 418 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i - \psi \phi e^n_i - \frac{\psi \phi }{1-\psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right )\right ) \right ) )]]418 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i - \psi \phi e^n_i \right ) - \frac{\psi \phi }{1-\psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right ) \right ) )]] 419 419 420 420 which simplifies to