Changes between Version 12 and Version 13 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/19/13 13:19:59 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v12 v13  
    7979For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update.  In this case we can solve the radiation energy equation:
    8080
    81 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B-cE) = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]
     81||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B-cE) = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]   ||
     82||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B-cE))]]   ||
    8283
    8384where [[latex(\mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla E)]]
     
    8586Which we can discretize for (1D) as
    8687
    87 [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1}-E^{n+1}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{n+1}_{i}-E^{n+1}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]]
     88||   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1}-E^{n+1}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{n+1}_{i}-E^{n+1}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]]   ||
     89||   [[latex(e^{n+1}_i-e^{n}_i = - \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]]   ||
     90
    8891
    8992where
     93
     94
    9095
    9196[[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right ) )]]
     
    108113This gives matrix coefficients
    109114
    110 [[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]
     115||   [[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]   ||
     116||   [[latex(\left ( 1 \right ) e^{n+1}_i - \left ( \epsilon^n_i \right )E^{n+1}_i =e^n_i-\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]   ||
    111117
    112118and for 2D the matrix coefficients would be