Changes between Version 131 and Version 132 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/31/13 09:59:07 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v131 v132  
    392392  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E  \right ) - f \left ( e \right ) - g \left (e,E, \nabla E \right )  )]] 
    393393  where
    394 [[latex( f \left ( e \right ) = - 4 \pi \kappa_{0P} B(T(e)) )]]
     394[[latex( f \left ( e \right ) = -4 \pi \kappa_{0P} B(T(e)) )]]
    395395 and
    396396  [[latex( g \left (e,E, \nabla E \right ) = \kappa_{0P}(cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]]
     
    401401so that the first equation can be written as
    402402
    403   [[latex(\frac{\partial e}{\partial t}  = f \left ( e_0 \right ) + g \left ( E,\nabla E \right )  + \frac{\partial f}{\partial e} \left ( e - e_0 \right ) )]]
     403  [[latex(\frac{\partial e}{\partial t}  =  f \left ( e_0 \right ) + g \left ( E,\nabla E \right )  + \frac{\partial f}{\partial e} \left ( e - e_0 \right ) )]]
    404404
    405405and then discretized as
    406406
    407   [[latex(e^{n+1}_i-e^{n}_i = \Delta t  \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) + \left ( \left ( \bar{\psi} - 1  \right ) \phi \right ) e^n_i +  \psi \phi e^{n+1}_i )]]
     407  [[latex(e^{n+1}_i-e^{n}_i = \Delta t  \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) - \left ( \left ( \bar{\psi} - 1  \right ) \phi \right ) e^n_i -  \psi \phi e^{n+1}_i )]]
     408
     409where
     410
     411[[latex(\phi = -\Delta t \frac{\partial f}{\partial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B(T(e))}{\partial e})]]
    408412
    409413which can be solved for
    410 [[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 - \psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]]
     414[[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 + \psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]]
    411415
    412416Then if we take the semi-discretized equation for E
     
    422426  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1-\psi \phi} \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]] 
    423427
     428Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use E^n+1^ and E^n^ to construct E^*^ which we can plug into the equation for e^n+1^
     429
    424430
    425431=== Expanding f about e,,0,, ===
    426432
    427 Of course even if the opacity is independent of energy and radiation energy, the above combined system of equations is still non-linear due to the dependence on Temperature of the Planck Function [[latex(B(T))]]
    428 
    429 If we ignore the changes in the Temperature due to heating during the implicit step which would feed back into the source function.  We can improve this by writing
    430 
    431 [[latex(B(T) = B \left ( T_0+dT \right ) = B \left ( T_0 \right ) + \left . \frac{\partial B}{\partial T} \right | _{T_0} \frac{\partial T}{\partial e} de = \frac{c}{4 \pi} a_R \left ( T_0^4 + 4T_0^3\Gamma de \right ) = B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right ) )]]
     433Expanding
     434
     435[[latex(B(T(e)) = B \left ( T_0+dT(e) \right ) = B \left ( T_0 \right ) + \left . \frac{\partial B}{\partial T} \right | _{T_0} \frac{\partial T}{\partial e} de = \frac{c}{4 \pi} a_R \left ( T_0^4 + 4T_0^3\Gamma de \right ) = B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right ) )]]
    432436
    433437where
     
    435439[[latex(\Gamma = \frac{\partial T}{\partial e} = \frac{(\gamma-1)}{n k_B})]]
    436440
    437 Then the system of equations becomes
    438 
    439    [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] - \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]]   
     441and we can identify [[latex(\phi = -\Delta t \frac{\partial f}{\parial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B}{\partial e} = 16 \pi \kappa \Delta t B_0 \frac{\Gamma}{T_0})]]
     442
     443Then the equation for e becomes
     444
    440445   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]]   
    441446
     
    450455
    451456=== Implicit Discretization 2 ===
    452 Which we can discretize for (1D) as
     457Now we can discretize the radiation energy equation
    453458
    454459   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) - \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]