Changes between Version 131 and Version 132 of FluxLimitedDiffusion
- Timestamp:
- 03/31/13 09:59:07 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v131 v132 392 392 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left ( e \right ) - g \left (e,E, \nabla E \right ) )]] 393 393 where 394 [[latex( f \left ( e \right ) = - 394 [[latex( f \left ( e \right ) = -4 \pi \kappa_{0P} B(T(e)) )]] 395 395 and 396 396 [[latex( g \left (e,E, \nabla E \right ) = \kappa_{0P}(cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]] … … 401 401 so that the first equation can be written as 402 402 403 [[latex(\frac{\partial e}{\partial t} = f \left ( e_0 \right ) + g \left ( E,\nabla E \right ) +\frac{\partial f}{\partial e} \left ( e - e_0 \right ) )]]403 [[latex(\frac{\partial e}{\partial t} = f \left ( e_0 \right ) + g \left ( E,\nabla E \right ) + \frac{\partial f}{\partial e} \left ( e - e_0 \right ) )]] 404 404 405 405 and then discretized as 406 406 407 [[latex(e^{n+1}_i-e^{n}_i = \Delta t \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) + \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i + \psi \phi e^{n+1}_i )]] 407 [[latex(e^{n+1}_i-e^{n}_i = \Delta t \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) - \left ( \left ( \bar{\psi} - 1 \right ) \phi \right ) e^n_i - \psi \phi e^{n+1}_i )]] 408 409 where 410 411 [[latex(\phi = -\Delta t \frac{\partial f}{\partial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B(T(e))}{\partial e})]] 408 412 409 413 which can be solved for 410 [[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 -\psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]]414 [[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 + \psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]] 411 415 412 416 Then if we take the semi-discretized equation for E … … 422 426 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1-\psi \phi} \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]] 423 427 428 Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use E^n+1^ and E^n^ to construct E^*^ which we can plug into the equation for e^n+1^ 429 424 430 425 431 === Expanding f about e,,0,, === 426 432 427 Of course even if the opacity is independent of energy and radiation energy, the above combined system of equations is still non-linear due to the dependence on Temperature of the Planck Function [[latex(B(T))]] 428 429 If we ignore the changes in the Temperature due to heating during the implicit step which would feed back into the source function. We can improve this by writing 430 431 [[latex(B(T) = B \left ( T_0+dT \right ) = B \left ( T_0 \right ) + \left . \frac{\partial B}{\partial T} \right | _{T_0} \frac{\partial T}{\partial e} de = \frac{c}{4 \pi} a_R \left ( T_0^4 + 4T_0^3\Gamma de \right ) = B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right ) )]] 433 Expanding 434 435 [[latex(B(T(e)) = B \left ( T_0+dT(e) \right ) = B \left ( T_0 \right ) + \left . \frac{\partial B}{\partial T} \right | _{T_0} \frac{\partial T}{\partial e} de = \frac{c}{4 \pi} a_R \left ( T_0^4 + 4T_0^3\Gamma de \right ) = B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right ) )]] 432 436 433 437 where … … 435 439 [[latex(\Gamma = \frac{\partial T}{\partial e} = \frac{(\gamma-1)}{n k_B})]] 436 440 437 Then the system of equations becomes 438 439 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] - \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]] 441 and we can identify [[latex(\phi = -\Delta t \frac{\partial f}{\parial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B}{\partial e} = 16 \pi \kappa \Delta t B_0 \frac{\Gamma}{T_0})]] 442 443 Then the equation for e becomes 444 440 445 [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]] 441 446 … … 450 455 451 456 === Implicit Discretization 2 === 452 Which we can discretize for (1D) as 457 Now we can discretize the radiation energy equation 453 458 454 459 [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i + \phi^n_i e^{*}_i + \theta^n_i) - \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]