Changes between Version 132 and Version 133 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/31/13 10:22:57 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v132 v133  
    439439[[latex(\Gamma = \frac{\partial T}{\partial e} = \frac{(\gamma-1)}{n k_B})]]
    440440
    441 and we can identify [[latex(\phi = -\Delta t \frac{\partial f}{\parial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B}{\partial e} = 16 \pi \kappa \Delta t B_0 \frac{\Gamma}{T_0})]]
     441and we can identify [[latex(\phi = -\Delta t \frac{\partial f}{\partial e} = 4 \pi \kappa_{0P} \Delta t \frac{\partial B}{\partial e} = 16 \pi \kappa_{0P} \Delta t B_0 \frac{\Gamma}{T_0})]]
    442442
    443443Then the equation for e becomes
     
    455455
    456456=== Implicit Discretization 2 ===
    457 Now we can discretize the radiation energy equation
    458 
    459    [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) - \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]   
    460    [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i + \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]   
     457Now we can discretize
     458[[latex(g(E*, \nabla E*) =  \kappa_{0P}cE + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]]
     459
     460as
     461
     462[[latex(g = \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) + \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) - \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right )]]
     463
     464which along with the other terms gives
     465
     466   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1}- \psi E^{n+1}_{i} - \psi E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] + \left [ \zeta^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1} + \psi E^{n+1}_{i} + \psi E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] - \frac{1}{1-\psi \phi} \left [ \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] )]]   
     467
    461468
    462469where the diffusion coefficient is given by