457 | | Now we can discretize the radiation energy equation |
458 | | |
459 | | [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i + \phi^n_i e^{*}_i + \theta^n_i) - \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]] |
460 | | [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i - \phi^n_i e^{*}_i - \theta^n_i + \omega_{i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]] |
| 457 | Now we can discretize |
| 458 | [[latex(g(E*, \nabla E*) = \kappa_{0P}cE + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]] |
| 459 | |
| 460 | as |
| 461 | |
| 462 | [[latex(g = \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) + \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) - \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right )]] |
| 463 | |
| 464 | which along with the other terms gives |
| 465 | |
| 466 | [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1}- \psi E^{n+1}_{i} - \psi E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] + \left [ \zeta^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1} + \psi E^{n+1}_{i} + \psi E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] - \frac{1}{1-\psi \phi} \left [ \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] )]] |
| 467 | |