465 | | |
466 | | [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1}- \psi E^{n+1}_{i} - \psi E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] + \left [ \zeta^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1} + \psi E^{n+1}_{i} + \psi E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] - \frac{1}{1-\psi \phi} \left [ \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] )]] |
| 465 | {{{ |
| 466 | #!latex |
| 467 | \begin{eqnarray} |
| 468 | E^{n+1}_i-E^{n}_i = & \left [ \alpha^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1}- \psi E^{n+1}_{i} - \psi E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] \\ |
| 469 | + & \left [ \zeta^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1} + \psi E^{n+1}_{i} + \psi E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] \\ |
| 470 | - & \frac{1}{1-\psi \phi} \left [ \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] )]] |