Changes between Version 135 and Version 136 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/31/13 10:43:40 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v135 v136  
    456456=== Implicit Discretization 2 ===
    457457Now we can discretize
    458 [[latex(g(E*, \nabla E*) =  \kappa_{0P}cE + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E )]]
     458[[latex(g(E*, \nabla E*) =  \kappa_{0P}cE^* + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E^* -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E^*)]]
    459459
    460460as
     
    466466#!latex
    467467\begin{eqnarray}
    468 E^{n+1}_i-E^{n}_i = & \left [ \alpha^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1}- \psi E^{n+1}_{i} - \psi E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi  E^{n+1}_{i} + \bar{\psi} E^n_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
    469  + & \left [ \zeta^n_{i+1/2} \left ( \psi E^{n}_{i+1} + \bar{\psi} E^{n+1}_{i+1} + \psi E^{n+1}_{i} + \psi E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
    470 - & \frac{1}{1-\psi \phi} \left [ \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] \\
     468E^{n+1}_i-E^{n}_i = & \left [ \alpha^n_{i+1/2} \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^{n}_{i+1}- \psi E^{n+1}_{i} - \bar{\psi} E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi  E^{n+1}_{i} + \bar{\psi} E^{n}_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
     469 + & \left [ \zeta^n_{i+1/2} \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^{n}_{i+1} + \psi E^{n+1}_{i} + \bar{\psi} E^n_{i} \right ) - \zeta^n_{i-1/2} \left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
     470- & \frac{1}{1-\psi \phi} \left [ \theta + \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) - \omega v^n_x \left ( \psi E^{n+1}_{i+1} - \psi E^{n+1}_{i-1} + \bar{\psi} E^n_{i+1}- \bar{\psi} E^n_{i-1} \right ) + \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] \\
    471471\end{eqnarray}
    472472}}}
     
    474474where the diffusion coefficient is given by
    475475
    476 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2}  \frac{c \lambda_{i+1/2}}{\kappa_{0R,i+1/2}} \mbox{ where } \kappa_{0R,i+1/2} = \frac{\kappa^n_{0R,i}+\kappa^n_{0R,i+1}}{2} \mbox{ and } \lambda_{i+1/2} = \frac{1}{R_{i+1/2}} \left ( \coth R_{i+1/2} - \frac{1}{R_{i+1/2}} \right ) )]]
     476[[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2}  \frac{c \lambda_{i+1/2}}{\kappa_{0R,i+1/2}} )]] 
     477
    477478and where
     479
     480[[latex(\zeta_{i+1/2}= \frac{\Delta t}{\Delta x}\frac{3-R_{2,i+1/2}}{2} v^n_x,{i+1/2} )]]
     481
     482and
     483
     484[[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]]
     485
     486and
     487
     488[[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
     489
     490and
     491
     492[[latex(\theta = f(e^n_i) = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) )]]
     493
     494and
     495
     496[[latex(\omega_{i} = \frac{\lambda_i \Delta t}{\Delta x} \left ( \frac{\kappa_{0P,i}}{\kappa_{0R,i}}-\frac{1}{2} \right ))]]
     497
     498
     499and
     500
     501where [[latex( \kappa_{0R,i+1/2} = \frac{\kappa^n_{0R,i}+\kappa^n_{0R,i+1}}{2} )]]
     502
     503and
     504
    478505[[latex(R_{i+1/2} = \frac{\left | E^n_{i+1}-E^n_{i} \right | }{2 \kappa_{0R,i+1/2} \left ( E^n_i+E^n_{i+1} \right )})]]
    479506
    480 
    481 and
    482 
    483 [[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]]
    484 
    485 represents the number of absorption/emissions during the time step
    486 
    487 
    488 and
    489 
    490 [[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
    491 
    492 [[latex(\theta = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} \right ) )]]
    493 
    494 and we can think of the radiative flux as
    495 
    496 [[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{*}_{i+1} - E^{*}_i \right ) )]]
    497 
    498 and
    499 
    500 where [[latex(\omega_{i} = \frac{\lambda_i \Delta t}{\Delta x} \left ( \frac{\kappa_{0P,i}}{\kappa_{0R,i}}-\frac{1}{2} \right ))]]
    501 
    502 where
    503 
    504 [[latex(\frac{\omega}{\alpha} = \frac{v}{c} \kappa_{0R,i} \Delta x)]]
     507and
     508
     509[[latex(\lambda_{i+1/2} = \frac{1}{R_{i+1/2}} \left ( \coth R_{i+1/2} - \frac{1}{R_{i+1/2}} \right ) )]]
     510
     511and
     512
     513[[latex(R_{2,i+1/2} = \lambda_{i+1/2}+\lambda_{i+1/2}^2 R_{i+1/2}^2)]]
     514
     515and
     516
     517
     518[[latex(R_{i} = \frac{\left | E^n_{i+1}-E^n_{i-1} \right | }{2 \kappa_{0R,i} E^n_{i}})]]
     519
     520and
     521
     522[[latex(\lambda_{i} = \frac{1}{R_{i}} \left ( \coth R_{i} - \frac{1}{R_{i}} \right ) )]]
     523
     524and
     525
     526[[latex(R_{2,i} = \lambda_{i}+\lambda_{i}^2 R_{i}^2)]]
     527
     528
    505529=== Time Discretization ===
    506530