545 | | |
546 | | Now since the second equation has no spatial dependence, we can solve it for |
547 | | [[latex(\color{purple}{e^{n+1}_i = \frac{1}{ 1 +\psi \phi^n_i}\left \{ \left ( \psi \epsilon^n_i \right )E^{n+1}_i + \left ( \psi \omega_i v_{x,i} \right ) E^{n+1}_{i+1} - \left ( \psi \omega_i v_{x,i} \right ) E^{n+1}_{i-1} + \left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n + \bar{\psi} \omega_i v_{x,i} \left ( E^{n}_{i+1}- E^{n}_{i-1} \right ) \right \}} )]] |
548 | | |
549 | | and plug the result into the first equation to get a matrix equation involving only one variable. |
550 | | |
551 | | [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \left ( \alpha^n_{i+1/2}- \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n+1}_{i+1} - \left ( \psi \left ( \alpha^n_{i-1/2} + \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \left ( \alpha^n_{i+1/2} - \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n}_{i+1} + \left ( \bar{\psi} \left ( \alpha^n_{i-1/2} + \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n}_{i-1} + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i} e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]] |
552 | | |
553 | | |
600 | | To have a constant radiative flux we must zero out terms involving the gradient and just add [[latex(F_0 \frac{\Delta t}{\Delta x})]] in the source vector |
601 | | |
602 | | === Summary === |
603 | | |
604 | | |
605 | | || Numerical value || Boundary || [[latex(E^{n+1}_{i+1})]] || [[latex(E^{n+1}_i)]] || [[latex(E^{n+1}_{i-1})]] || [[latex(S)]] |
606 | | || 0 || RAD_FREE_STREAMING || [[latex(\color{red}{0})]] || [[latex(\color{red}{\psi c \frac{\Delta t}{\Delta x}})]] || [[latex(-\psi\alpha_{i-1/2})]] || [[latex(\color{red}{-\bar{\psi}c \frac{\Delta t}{\Delta x} E^n_i} + \bar{\psi}\alpha_{i-1/2} \left ( E^n_{i-1}-E^n_i \right ))]] || |
607 | | || 1 || RAD_EXTRAPOLATE_FLUX || [[latex(\color{red}{0})]] || [[latex(\color{red}{0})]] || [[latex(\color{red}{0})]] || [[latex(\color{red}{0})]] || |
608 | | || 2 || INTERNAL/PERIODIC || [[latex(-\psi\alpha_{i+1/2})]] || [[latex(\psi\alpha_{i+1/2})]] || [[latex(-\psi\alpha_{i-1/2})]] || [[latex(\bar{\psi}\alpha_{i+1/2} \left ( E^n_{i+1}-E^n_i \right ) + \bar{\psi}\alpha_{i-1/2} \left ( E^n_{i-1}-E^n_i \right ))]] || |
609 | | || 3 || RAD_REFLECTING || [[latex(\color{red}{0})]] || [[latex(\color{red}{0})]] || [[latex(-\psi\alpha_{i-1/2})]] || [[latex( \bar{\psi}\alpha_{i-1/2} \left ( E^n_{i-1}-E^n_i \right ))]] || |
610 | | || 4 || RAD_USERDEFINED_BOUNDARY/AMR_BOUNDARY || [[latex(\color{red}{0})]] || [[latex(\psi\alpha_{i+1/2})]] || [[latex(-\psi\alpha_{i-1/2})]] || [[latex(\bar{\psi}\alpha_{i+1/2} \left ( E^n_{i+1}-E^n_i \right ) \color{red}{- \psi \alpha_{i+1/2} E^{n+1}_{i+1}} + \bar{\psi}\alpha_{i-1/2} \left ( E^n_{i-1}-E^n_i \right ))]] || |
611 | | || 5 || RAD_USERDEFINED_FLUX || [[latex(\color{red}{0})]] || [[latex(\color{red}{0})]] || [[latex(-\psi\alpha_{i-1/2})]] || [[latex(\color{red}{F_0 \frac{\Delta t}{\Delta x}} + \bar{\psi}\alpha_{i-1/2} \left ( E^n_{i-1}-E^n_i \right ))]] || |
612 | | |
613 | | |
614 | | |
615 | | And for the semi implicit term |
616 | | |
617 | | || Numerical value || Boundary || [[latex(E^{n+1}_{i+1})]] || [[latex(E^{n+1}_{i})]] || [[latex(E^{n+1}_{i-1})]] || [[latex(S)]] |
618 | | || 0 || RAD_FREE_STREAMING || [[latex(0)]] || [[latex(\frac{\psi \omega_i v_{x,i}}{1+\psi \phi^n_i}-\frac{\psi \epsilon^n_i \left ( 2 - \frac{\kappa_{0R,i}}{\kappa_{0P,i}} \right ) \frac{v_{x,i}}{c}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i}-E^n_{i-1} \right ) + \frac{\bar{\psi} \epsilon^n_i \left ( 2 - \frac{\kappa_{0R,i}}{\kappa_{0P,i}} \right ) \frac{v_{x,i}}{c}}{1+\psi \phi^n_i} E^n_i)]] || |
619 | | || 1 || RAD_EXTRAPOLATE_FLUX* || [[latex(0)]] || [[latex(2\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-2\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-2\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i}-E^n_{i-1} \right ))]] || |
620 | | || 2 || INTERNAL/PERIODIC || [[latex(\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(0)]] || [[latex(-\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i+1}-E^n_{i-1} \right ))]] || |
621 | | || 3 || RAD_REFLECTING || [[latex(0)]] || [[latex(\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i}-E^n_{i-1} \right ))]] || |
622 | | || 4 || RAD_USERDEFINED_BOUNDARY/AMR_BOUNDARY || [[latex(0)]] || [[latex(0)]] || [[latex(-\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i+1}-E^n_{i-1} \right ) - \frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i} E^{n+1}_{i+1})]] || |
623 | | || 5 || RAD_USERDEFINED_FLUX || [[latex(0)]] || [[latex(\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\psi\omega_i v_{x,i}}{1+\psi \phi^n_i})]] || [[latex(-\frac{\bar{\psi}\omega_i v_{x,i}}{1+\psi \phi^n_i} \left ( E^n_{i}-E^n_{i-1} \right ))]] || |
624 | | |
625 | | !* We can make the left boundary look like the right boundary by reflecting the domain in x. Then we just swap every ,,i+1,, <-> ,,i-1,, and v,,x,, -> -v,,x,, |
626 | | |
627 | | [[CollapsibleEnd()]] |
| 589 | |
| 590 | [[latex(E_g = E_i - F_0 \frac{\kappa_g \Delta x}{c \lambda_g} |
| 591 | |
| 592 | [[CollapsibleEnd()]] |