Changes between Version 147 and Version 148 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/31/13 17:21:50 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v147 v148  
    11[[PageOutline()]]
    22
    3 Typically when we discuss the radiation field we use the spectral intensity [[latex(I \left ( \nu, \mathbf{x}, \Omega \right ) ]] which is a function of frequency, position, and direction.  This is very similar to the phase space density used in deriving the fluid equations [[latex(f \left ( \mathbf{x}, \mathbf{v} \right ) )]] except that light always travels at 'c', so the velocity dependence is just a direction dependence.  Furthermore, photons can have different frequencies, so there is an extra dimension to the phase space.  And finally, instead of storing the phase space density of photons, the spectral intensity is the phase space density of energy flux...  Going between photon number and energy flux just involves a factor of [[latex(\h \nu c)]]
     3Typically when we discuss the radiation field we use the spectral intensity [[latex(I \left ( \nu, \mathbf{x}, \Omega \right ) )]] which is a function of frequency, position, and direction.  This is very similar to the phase space density used in deriving the fluid equations [[latex(f \left ( \mathbf{x}, \mathbf{v} \right ) )]] except that light always travels at 'c', so the velocity dependence is just a direction dependence.  Furthermore, photons can have different frequencies, so there is an extra dimension to the phase space.  And finally, instead of storing the phase space density of photons, the spectral intensity is the phase space density of energy flux...  Going between photon number and energy flux just involves a factor of [[latex(h \nu c)]]
    44
    55So we have
    66
    7 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c n \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
    8 
    9 and
    10 
    11 [[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega \dA \dt = h \nu n \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dV)]]
     7[[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
     8
     9and
     10
     11[[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA dt = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dV)]]
    1212
    1313where the number of photons traveling normal to the surface dA that cross the surface dA in time dt is just the number of photons in the volume dV = dA c dt (assuming the photons are headed normal to dA)...
    1414
    1515so we have
    16 [[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega \dA \dt = h \nu n \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA c dt)]]
     16[[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA dt = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA c dt)]]
    1717
    1818and we can identify
    1919
    20 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c n \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
     20[[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
    2121
    2222Some of what follows is taken from [http://adsabs.harvard.edu/abs/2007ApJ...667..626K Krumholz et al. 2007]