Changes between Version 154 and Version 155 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/01/13 19:43:09 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v154 v155  
    2727
    2828There are also parallels between the radiation transport equation and the Boltzmann transport equation except that photons don't experience body forces, and photon's don't collide with each other, but scatter off of particles.
    29 ||  [[latex(\frac{\partial}{\partial t} I_\nu + c \mathbf{n} \cdot \nabla I_\nu = c \eta_\nu - c \xi_\nu I_\nu)]]  ||
     29||  [[latex(\frac{\partial}{\partial t} I_\nu + c \mathbf{n} \cdot \nabla I_\nu = c \eta_\nu - c \chi_\nu I_\nu)]]  ||
    3030||  [[latex(\frac{\partial}{\partial t} f + \mathbf{v} \cdot  \nabla f + \mathbf{a} \cdot \nabla_v f = \left ( \frac{\partial f}{\partial t} \right )_{coll} )]]  ||
    3131
    32 and often the radiation transport equation is written
    33   [[latex(\frac{\partial I_\nu}{\partial \tau} = S_\nu - I \nu )]]
    34 
    35 where we have projected the transport equation along a charateristic.
    36 
    37 And there are various limits that are important to consider.
     32If we solve the transport equation along a characteristic [[latex(\left \[ \mathbf{x}\left ( s \right ), t(s) \right \] = \left \[ \mathbf{x0} + \mathbf{n} s, \frac{s}{c
     33} \right \] )]]
     34
     35we have
     36
     37[[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu - \chi_\nu I_\nu )]]
     38
     39and then we can divide through by [[latex(\chi)]] we get
     40
     41[[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu - I_\nu)]]
     42
     43where [[latex(\tau_\nu = \int \kappa_\nu ds )]] is the optical depth
     44
     45
     46There are various limits that are important to consider.
    3847
    3948|| [[latex(\tau = l \kappa=\frac{l}{\lambda_p})]] || [[latex(\beta = \frac{u}{c})]] ||