Changes between Version 156 and Version 157 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/01/13 19:51:15 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v156 v157  
    3030||  [[latex(\frac{\partial}{\partial t} f + \mathbf{v} \cdot  \nabla f + \mathbf{a} \cdot \nabla_v f = \left ( \frac{\partial f}{\partial t} \right )_{coll} )]]  ||
    3131
    32 If we solve the transport equation along a characteristic [[latex(\left ![ \mathbf{x}\left ( s \right ), t(s) \right \] = \left \[ \mathbf{x0} + \mathbf{n} s, \frac{s}{c
    33 } \right !] )]]
     32If we solve the transport equation along a characteristic
     33
     34[[latex(\left \[ \mathbf{x} \left ( s \right ), t \left ( s \right ) \right \] = \left \[ \mathbf{x0} + \mathbf{n} s, \frac{s}{c} \right \] )]]
    3435
    3536we have
    3637
    37 [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu - \chi_\nu I_\nu )]]
    38 
    39 and then we can divide through by [[latex(\chi)]] we get
     38[[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu - \chi_\nu I_\nu )]]
     39
     40and then we can divide through by [[latex(\chi_\nu)]] we get
    4041
    4142[[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu - I_\nu)]]
    4243
    43 where [[latex(\tau_\nu = \int \kappa_\nu ds )]] is the optical depth
    44 
     44where [[latex(d\tau_\nu = \kappa_\nu ds )]] is the optical depth.  The right hand side should be evaluated along the characteristic so we have
     45
     46[[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right )  - I_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right ) )]]
    4547
    4648There are various limits that are important to consider.