38 | | [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu - \chi_\nu I_\nu )]] |
39 | | |
40 | | and then we can divide through by [[latex(\chi_\nu)]] we get |
41 | | |
42 | | [[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu - I_\nu)]] |
43 | | |
44 | | where [[latex(d\tau_\nu = \kappa_\nu ds )]] is the optical depth. The right hand side should be evaluated along the characteristic so we have |
45 | | |
46 | | [[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right ) - I_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right ) )]] |
47 | | |
48 | | There are various limits that are important to consider. |
| 38 | [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu(s) - \chi_\nu(s) I_\nu (s) )]] |
| 39 | |
| 40 | where [[latex(f(s) = f(\mathbf{x}(s), t(s)) = f \left ( \mathbf{x_0}+\mathbf{n} s, \frac{s}{c} \right ) )]] |
| 41 | |
| 42 | and then we can divide through by [[latex(\chi_\nu(s))]] we get |
| 43 | |
| 44 | [[latex(\frac{dI_\nu}{\chi_\nu(s) ds} = \frac{\eta_\nu(s)}{\chi_\nu(s)} - I_\nu(s) = S_\nu(s) - I_\nu(s))]] |
| 45 | |
| 46 | Now if we define |
| 47 | |
| 48 | [[latex(d\tau_\nu = \chi_\nu(s) ds )]] which gives [[latex(\tau_nu(s) = \int\limits_0^s \chi_\nu(s') ds')]] |
| 49 | |
| 50 | [[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau^'_\nu )]] |
| 51 | |
| 52 | There are a few important dimensionless numbers to consider: |