Changes between Version 159 and Version 160 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/02/13 01:01:39 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v159 v160  
    3636we have
    3737
    38 [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu - \chi_\nu I_\nu )]]
    39 
    40 and then we can divide through by [[latex(\chi_\nu)]] we get
    41 
    42 [[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu - I_\nu)]]
    43 
    44 where [[latex(d\tau_\nu = \kappa_\nu ds )]] is the optical depth.  The right hand side should be evaluated along the characteristic so we have
    45 
    46 [[latex(\frac{dI_\nu}{d\tau_\nu} = \frac{\eta_\nu}{\chi_\nu} - I_\nu = S_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right )  - I_\nu \left ( \mathbf{x}_0+c\mathbf{n} t \right ) )]]
    47 
    48 There are various limits that are important to consider.
     38[[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu(s) - \chi_\nu(s) I_\nu (s)  )]]
     39
     40where [[latex(f(s) = f(\mathbf{x}(s), t(s)) = f \left ( \mathbf{x_0}+\mathbf{n} s, \frac{s}{c} \right ) )]]
     41
     42and then we can divide through by [[latex(\chi_\nu(s))]] we get
     43
     44[[latex(\frac{dI_\nu}{\chi_\nu(s) ds} = \frac{\eta_\nu(s)}{\chi_\nu(s)} - I_\nu(s) = S_\nu(s) - I_\nu(s))]]
     45
     46Now if we define
     47
     48[[latex(d\tau_\nu = \chi_\nu(s) ds )]] which gives [[latex(\tau_nu(s) = \int\limits_0^s \chi_\nu(s') ds')]]
     49
     50[[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau^'_\nu )]]
     51
     52There are a few important dimensionless numbers to consider:
    4953
    5054|| [[latex(\tau = l \kappa=\frac{l}{\lambda_p})]] || [[latex(\beta = \frac{u}{c})]] ||