48 | | [[latex(d\tau_\nu = \chi_\nu(s) ds )]] which gives [[latex(\tau_\nu(s) = \int\limits_0^s \chi_\nu(s') ds')]] |
49 | | |
50 | | [[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau'_\nu )]] |
51 | | |
52 | | There are a few important dimensionless numbers to consider: |
| 48 | [[latex(d\tau_\nu = \chi_\nu(s) ds )]] |
| 49 | which gives |
| 50 | |
| 51 | || [[latex(\tau_\nu(s) = \int\limits_0^s \chi_\nu(s') ds')]] || |
| 52 | || [[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau'_\nu )]] || |
| 53 | |
| 54 | we can write the transport equation in the simplest form |
| 55 | |
| 56 | [[latex(\frac{dI_\nu}{d\tau_\nu} = S_\nu(\tau_\nu) - I_\nu(\tau_\nu))]] |
| 57 | |
| 58 | although the RHS is now more difficult to evaluate as |
| 59 | |
| 60 | [[latex( f \left ( \tau_\nu \right ) = f \left ( s \left ( \tau_nu \right ) \right ) = f \left ( \mathbf{x} \left (s \left ( \tau_nu \right ) \right ), t \left ( s \left ( \tau_nu \right ) \right ) \right ) )]] |
| 61 | |
| 62 | There are also a few important dimensionless numbers to consider: |