Changes between Version 166 and Version 167 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/03/13 12:13:52 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v166 v167  
    33= Physics of Radiation Transfer =
    44
     5[[CollapsibleStart(Spectral Intensity)]]
     6== Spectral Intensity ==
    57Typically when we discuss the radiation field we use the spectral intensity [[latex(I \left ( \nu, \mathbf{x}, \Omega \right ) )]] which is a function of frequency, position, and direction.  This is very similar to the phase space density used in deriving the fluid equations [[latex(f \left ( \mathbf{x}, \mathbf{v} \right ) )]] except that
    68 * light always travels at 'c', so the velocity dependence is just a direction dependence. 
     
    1012Going between photon number and energy just involves a factor of [[latex(h \nu)]] and going from energy density to energy flux density just involves a factor of [[latex(c)]] so we have
    1113
    12 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
     14 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
    1315
    1416This can also be seen by considering the differential energy
    1517
    16 [[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA dt = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dV)]]
     18 [[latex(dE = I \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA dt = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dV)]]
    1719
    1820where the number of photons traveling normal to the surface dA that cross the surface dA in time dt is just the number of photons in the volume dV = dA c dt (assuming the photons are headed normal to dA)...
    1921
    2022so we also have
    21 [[latex(dE = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA c dt)]]
     23 [[latex(dE = h \nu f \left ( \nu, \mathbf{x}, \Omega, \right ) d\nu d\Omega dA c dt)]]
    2224
    2325which gives
    2426
    25 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
    26 
    27 
    28 There are also parallels between the radiation transport equation and the Boltzmann transport equation except that photons don't experience body forces, and photon's don't collide with each other, but scatter off of particles.
    29 ||  [[latex(\frac{\partial}{\partial t} I_\nu + c \mathbf{n} \cdot \nabla I_\nu = c \eta_\nu - c \chi_\nu I_\nu)]]  ||
    30 ||  [[latex(\frac{\partial}{\partial t} f + \mathbf{v} \cdot  \nabla f + \mathbf{a} \cdot \nabla_v f = \left ( \frac{\partial f}{\partial t} \right )_{coll} )]]  ||
     27 [[latex(I \left ( \nu, \mathbf{x}, \Omega, \right ) = h \nu c f \left ( \nu, \mathbf{x}, \Omega, \right ) )]]
     28
     29
     30[[CollapsibleEnd()]]
     31
     32[[CollapsibleStart(Deriving the Transport Equation)]]
     33== Deriving the Transport Equation ==
     34
     35If we consider the Boltzmann transport equation for photons of a specific frequency [[latex(f_\nu)]] we have
     36
     37 [[latex(\frac{\partial}{\partial t} f_\nu + \mathbf{v} \cdot  \nabla f + \mathbf{F} \cdot \nabla_p f = \left ( \frac{\partial f}{\partial t} \right )_{coll} )]]
     38
     39Now photons don't experience body forces, always travel at the speed of light,  and in general the "collision term" consists of photon emission and absorptions... so we have
     40
     41 [[latex(\frac{\partial}{\partial t} f_\nu + c \mathbf{n} \cdot  \nabla f_\nu  = A_{emiss}_\nu - \chi_\nu f_nu c  )]]
     42
     43where [[latex(A_{emiss}_\nu)]] is the emission rate of photons of frequency [[latex(\nu)]] and the mean free path length is given by [[latex(\chi_\nu = \sigma_nu n)]] where [[latex(\sigma_nu)]] is the particle scattering cross section and [[latex(n)]] is the number density of particles.
     44
     45Now if we multiply through by [[latex( h\nu)]]
     46
     47we have
     48
     49 [[latex(\frac{\partial}{c \partial t} I_\nu + \mathbf{n} \cdot  \nabla I_\nu  = \eta_\nu - \sigma_\nu I_\nu  )]]
     50
     51where
     52 [[latex(\eta_\nu = h\nu A_{emiss}_\nu)]] is the radiative power
    3153
    3254If we solve the transport equation along a characteristic
    3355
    34 [[latex(\left [ \mathbf{x} \left ( s \right ) , t \left ( s \right ) \right ] = \left [ \mathbf{x0} + \mathbf{n} s, \frac{s}{c} \right ] )]]
     56 [[latex(\left [ \mathbf{x} \left ( s \right ) , t \left ( s \right ) \right ] = \left [ \mathbf{x0} + \mathbf{n} s, \frac{s}{c} \right ] )]]
    3557
    3658we have
    3759
    38 [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu(s) - \chi_\nu(s) I_\nu (s)  )]]
     60 [[latex(\frac{d I_\nu}{d s} = \frac{\partial I_\nu}{\partial x^i} \frac{\partial{x^i}}{\partial s} + \frac{\partial I_\nu}{\partial t}\frac{\partial t}{\partial s} = \mathbf{n} \cdot \nabla I_\nu + \frac{1}{c}\frac{\partial I_\nu}{\partial t} = \eta_\nu(s) - \chi_\nu(s) I_\nu (s)  )]]
    3961
    4062where [[latex(f(s) = f(\mathbf{x}(s), t(s)) = f \left ( \mathbf{x_0}+\mathbf{n} s, \frac{s}{c} \right ) )]]
     
    4264and then we can divide through by [[latex(\chi_\nu(s))]] we get
    4365
    44 [[latex(\frac{dI_\nu}{\chi_\nu(s) ds} = \frac{\eta_\nu(s)}{\chi_\nu(s)} - I_\nu(s) = S_\nu(s) - I_\nu(s))]]
     66 [[latex(\frac{dI_\nu}{\chi_\nu(s) ds} = \frac{\eta_\nu(s)}{\chi_\nu(s)} - I_\nu(s) = S_\nu(s) - I_\nu(s))]]
    4567
    4668Now if we define
    4769
    48 [[latex(d\tau_\nu = \chi_\nu(s) ds )]]
     70 [[latex(d\tau_\nu = \chi_\nu(s) ds )]]
    4971which gives
    5072
    51 || [[latex(\tau_\nu(s) = \int\limits_0^s \chi_\nu(s') ds')]] ||
    52 || [[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau'_\nu )]]  ||
     73 [[latex(\tau_\nu(s) = \int\limits_0^s \chi_\nu(s') ds')]]
     74and
     75 [[latex(s(\tau_\nu) = \int\limits_0^\tau_\nu \frac{1}{\chi_\nu} d\tau'_\nu )]]
    5376
    5477we can write the transport equation in the simplest form
    5578
    56 [[latex(\frac{dI_\nu}{d\tau_\nu} = S_\nu(\tau_\nu) - I_\nu(\tau_\nu))]]
     79 [[latex(\frac{dI_\nu}{d\tau_\nu} = S_\nu(\tau_\nu) - I_\nu(\tau_\nu))]]
    5780
    5881although the RHS is now more difficult to evaluate as
    5982
    60 [[latex( f \left ( \tau_\nu \right ) = f \left ( s \left ( \tau_\nu \right ) \right ) = f \left ( \mathbf{x} \left (s \left ( \tau_\nu \right ) \right ), t \left ( s \left ( \tau_\nu \right ) \right ) \right ) )]]
     83 [[latex( f \left ( \tau_\nu \right ) = f \left ( s \left ( \tau_\nu \right ) \right ) = f \left ( \mathbf{x} \left (s \left ( \tau_\nu \right ) \right ), t \left ( s \left ( \tau_\nu \right ) \right ) \right ) )]]
    6184
    6285Also if we include scattering then the source function can depend on the mean radiative flux [[latex(\frac{cE}{4 \pi})]] and the transport equation becomes an integro-differential equation that must be solved iteratively...
     
    6992|| [[latex(\tau >> 1 \mbox{, } \beta \tau >> 1)]] || dynamic diffusion limit ||
    7093
     94[[CollapsibleEnd()]]
    7195
    7296[[CollapsibleStart(Equations of Radiation Hydrodynamics)]]