403 | | [[latex(\frac{\partial e}{\partial t} + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{red}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{red}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E})]] |
404 | | [[latex(\frac{\partial E}{\partial t} \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{red}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{red}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{red}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E} )]] |
405 | | |
406 | | It is possible that with included the terms in orange in a semi-implicit method, the dynamic diffusion regime may be stable... In any event, it costs very little to add all of the terms in orange to the implicit solve (using the old velocity). Then the momentum update can be done explicitly - though using a time centered radiation field. |
| 404 | [[latex(\frac{\partial e}{\partial t} + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{magenta}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{magenta}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E})]] |
| 405 | [[latex(\frac{\partial E}{\partial t} \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{magenta}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{magenta}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{magenta}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E} )]] |
| 406 | |
| 407 | It is possible that with included the terms in magenta in a semi-implicit method, the dynamic diffusion regime may be stable... In any event, it costs very little to add all of the terms in magenta to the implicit solve (using the old velocity). Then the momentum update can be done explicitly - though using a time centered radiation field. |
417 | | * Overlap d, p, e, E and do physical BC's |
418 | | * Do IR which updates e,,0,,, and E,,0,, using d,,1,,, e,,1,,, E,,1,, |
419 | | * Update E,,2*mbc,, using Edot,,2*mbc,, |
420 | | * Update e,,2*mbc,, using E,,2*mbc,,, Edot,,2*mbc,,, and e,,2*mbc,, |
421 | | * Update Edot,,0,, using pre IR and post IR E,,0,, |
422 | | * Ghost e,,2*mbc,,, E,,mbc+1,,, Edot,,mbc+1,, |
423 | | * Store EDot in child arrays to be prolongated |
| 417 | * Overlap \(\rho\), \(\rho \mathbf{v} \) , \(e\), \(E\) and do physical BC's |
| 418 | * Do IR which updates \(e_0\) and \(E_0\) using \(\rho_1\), \(e_1\), \(E_1\), and \(\dot{E}_1\) |
| 419 | * Update \(E_{2\mbox{mbc}}\) using \(\dot{E}_{2\mbox{mbc}}\) |
| 420 | * Update \(e_{2\mbox{mbc}}\) using \(E_{2\mbox{mbc}}\), \(\dot{E}_{2\mbox{mbc}}\), and \(e_{2\mbox{mbc}}\) |
| 421 | * Update \(\dot{E}_0\) using pre IR and post IR \(E_0\) |
| 422 | * Ghost \(e_{2\mbox{mbc}}\), \(E_{\mbox{mbc}+1}\), \(\dot{E}_{\mbox{mbc}+1}\) |
427 | | * Overlap d, p, e, E, and do physical BCs |
428 | | * Do IR which updates e,,0,,, and E,,0,, using d,,1,,, e,,1,,, E,,1,, |
429 | | * Update E,,mbc,, using Edot,,mbc,, |
430 | | * Update e,,2*mbc,, using E,,2*mbc,,, Edot,,2*mbc,,, and e,,2*mbc,, |
431 | | * Update Edot,,0,, using pre IR and post IR E,,0,, |
432 | | * Ghost e,,mbc,,, E,,1,,, Edot,,1,, |
433 | | * Store EDot in child arrays to be prolongated |
| 427 | * Overlap \(\rho\), \(\rho \mathbf{v} \) , \(e\), \(E\) and do physical BC's |
| 428 | * Do IR which updates \(e_0\) and \(E_0\) using \(\rho_1\), \(e_1\), \(E_1\), and \(\dot{E}_1\) |
| 429 | * Update \(\dot{E}_0\) using pre IR and post IR \(E_0\) |
| 430 | * Update \(E_{1}\) using \(\dot{E}_{1}\) |
| 431 | * Ghost \(e_{mbc}\), \(E_{1}\), \(\dot{E}_{1}\) |