Changes between Version 179 and Version 180 of FluxLimitedDiffusion
- Timestamp:
- 04/03/13 17:09:18 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v179 v180 521 521 Then the equation for e becomes 522 522 523 [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]]523 [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E)]] 524 524 525 525 which will be accurate as long as \(4\Gamma \frac{e-e_0}{T_0} < \xi << 1\) or \(\Delta e = e-e_0 < \xi \frac{T_0}{4 \Gamma}\) … … 527 527 We can calculate the time scale for this to be true using the evolution equation for the energy density 528 528 529 [[latex( \Delta e = -\Delta t \kappa_{0P} \left [ 4 \pi B_0 -cE \right ] < \xi \frac{T_0}{4 \Gamma})]]530 531 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left ( 4 \pi B_0 - cE \right )})]]529 [[latex(e-e_0=\Delta e = -\Delta t \kappa_{0P} \left [ 4 \pi B_0 -cE \right ] < \xi \frac{T_0}{4 \Gamma})]] 530 531 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma | \left ( \frac{\partial e}{\partial t} \right )_0 | })]] 532 532 533 533