Changes between Version 183 and Version 184 of FluxLimitedDiffusion
- Timestamp:
- 04/03/13 17:15:35 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v183 v184 523 523 [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E)]] 524 524 525 which will be accurate as long as \(4\Gamma \frac{ e-e_0}{T_0} < \xi << 1\) or \(\Delta e = e-e_0< \xi \frac{T_0}{4 \Gamma}\)525 which will be accurate as long as \(4\Gamma \frac{\left | e-e_0 \right | }{T_0} < \xi << 1\) or \(\left | \Delta e \right | = \left | e-e_0 \right | < \xi \frac{T_0}{4 \Gamma}\) 526 526 527 527 We can calculate the time scale for this to be true using the evolution equation for the energy density 528 528 529 [[latex( e-e_0=\Delta e = -\Delta t \frac{\partial e}{\partial t}< \xi \frac{T_0}{4 \Gamma})]]529 [[latex(\left | e-e_0 \right | = \left | \Delta e \right | = \Delta t \left | \frac{\partial e}{\partial t} \right | < \xi \frac{T_0}{4 \Gamma})]] 530 530 531 531 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \left | \frac{\partial e}{\partial t} \right | } = \xi \frac{T_0}{4 \Gamma \left | - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E \right | } )]]