Changes between Version 184 and Version 185 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/03/13 17:23:32 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v184 v185  
    545545\begin{eqnarray}
    546546E^{n+1}_i-E^{n}_i & = & \left [ \alpha^n_{i+1/2} \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^{n}_{i+1}- \psi E^{n+1}_{i} - \bar{\psi} E^n_{i} \right ) - \alpha^n_{i-1/2} \left ( \psi  E^{n+1}_{i} + \bar{\psi} E^{n}_i - \psi E^{n+1}_{i-1} - \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
    547  & + & \left [ \zeta^n_{i+1/2} v^n_{x,i+1/2} \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^{n}_{i+1} + \psi E^{n+1}_{i} + \bar{\psi} E^n_{i} \right ) - \zeta^n_{i-1/2} v^n_{x,i-1/2}\left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
    548  & - & \frac{1}{1-\psi \phi}  \left [ \theta + \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) + \omega v^n_x \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^n_{i+1} - \psi E^{n+1}_{i-1} - \bar{\psi} E^n_{i-1} \right ) - \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] \\
     547 & - & \left [ \zeta^n_{i+1/2} v^n_{x,i+1/2} \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^{n}_{i+1} + \psi E^{n+1}_{i} + \bar{\psi} E^n_{i} \right ) - \zeta^n_{i-1/2} v^n_{x,i-1/2}\left ( \psi E^{n+1}_{i} + \bar{\psi} E^n_i + \psi E^{n+1}_{i-1} + \bar{\psi}E^{n}_{i-1} \right ) \right ] \\
     548 & - & \frac{1}{1+\psi \phi}  \left [ - \theta + \epsilon \left ( \psi E^{n+1}_i + \bar{\psi} E^n_i \right ) + \omega v^n_x \left ( \psi E^{n+1}_{i+1} + \bar{\psi} E^n_{i+1} - \psi E^{n+1}_{i-1} - \bar{\psi} E^n_{i-1} \right ) - \xi \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) \right ] \\
    549549\end{eqnarray}
    550550}}}
     
    568568and
    569569
    570 [[latex(\theta = \Delta t f(e^n_i) =  \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) )]]
     570[[latex(\theta = - \Delta t f(e^n_i) =  \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) )]]
    571571
    572572and