Changes between Version 187 and Version 188 of FluxLimitedDiffusion
- Timestamp:
- 04/05/13 12:36:07 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v187 v188 262 262 [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]] 263 263 264 which will be accurate as long as \( 4\Gamma \frac{e-e_0}{T_0} < \xi << 1\) or \(\Delta e = e-e_0< \xi \frac{T_0}{4 \Gamma}\)264 which will be accurate as long as \(\left | 4\Gamma \frac{e-e_0}{T_0} \right | < \xi << 1\) or \(\Delta e = \left | e-e_0 \right | < \xi \frac{T_0}{4 \Gamma}\) 265 265 266 266 We can calculate the time scale for this to be true using the evolution equation for the energy density 267 267 268 [[latex(\Delta e = -\Delta t \kappa_{0P} \left [ 4 \pi B_0 -cE \right ]< \xi \frac{T_0}{4 \Gamma})]]269 270 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left ( 4 \pi B_0 - cE \right )})]]268 [[latex(\Delta e = \Delta t \kappa_{0P} \left | 4 \pi B_0 -cE \right | < \xi \frac{T_0}{4 \Gamma})]] 269 270 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \kappa_{0P} \left | 4 \pi B_0 - cE \right | })]] 271 271 272 272 … … 275 275 We can now discretize the equations 276 276 277 [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon E^{*}_i + \phi e^{*}_i + \theta_i - \phi_i ) )]]278 [[latex(e^{n+1}_i-e^{n}_i = \epsilon_i E^{*}_i - \phi_i e^{*}_i - \left(\theta_i-\phi_i \right ) )]]277 [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon E^{*}_i + \phi e^{*}_i + \theta_i - \phi_i e^n_i) )]] 278 [[latex(e^{n+1}_i-e^{n}_i = \epsilon_i E^{*}_i - \phi_i e^{*}_i - \left(\theta_i-\phi_i e^n_i \right ) )]] 279 279 280 280 where the diffusion coefficient is given by … … 319 319 In any event in 1D we have the following matrix coefficients 320 320 321 [[latex(\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} +\bar{\psi}\phi_i e^n_i + \theta_i)]] 322 [[latex(\left ( 1 +\psi \phi_i \right ) e^{n+1}_i - \left ( \psi \epsilon_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi}\phi_i \right ) e^n_i + \left ( \bar{\psi} \epsilon_i \right ) E^n_i-\theta_i )]] 321 [[latex(\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} - \psi\phi_i e^n_i + \theta_i)]] 322 323 [[latex(\left ( 1 +\psi \phi_i \right ) e^{n+1}_i - \left ( \psi \epsilon_i \right )E^{n+1}_i =\left ( 1 +\psi\phi_i \right ) e^n_i + \left ( \bar{\psi} \epsilon_i \right ) E^n_i-\theta_i )]] 323 324 324 325 325 326 Now since the second equation has no spatial dependence, we can solve it for 326 [[latex(\color{purple}{e^{n+1}_i = \frac{1}{ 1 +\psi \phi_i}\left \{ \left ( \psi \epsilon_i \right )E^{n+1}_i + \left ( 1 - \bar{\psi}\phi_i \right ) e^n_i + \left ( \bar{\psi} \epsilon_i \right ) E^n_i-\theta_i \right \}} )]]327 [[latex(\color{purple}{e^{n+1}_i = e^n_i + \frac{1}{ 1 +\psi \phi_i}\left \{ \left ( \psi \epsilon_i \right )E^{n+1}_i + \left ( \bar{\psi} \epsilon_i \right ) E^n_i-\theta_i \right \}} )]] 327 328 328 329 and plug the result into the first equation to get a matrix equation involving only one variable. 329 330 330 [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \frac{\epsilon_i}{ 1 +\psi \phi_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2} +\frac{\epsilon_i }{ 1 +\psi \phi_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} + \frac{ \phi_i}{ 1 +\psi \phi_i} e^n_i+ \frac{1}{ 1 +\psi \phi_i}\theta_i})]] 331 332 333 334 If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to setting \(\psi \phi = 0\) This gives the following equations: 335 336 [[latex(\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \epsilon_i \right ) \right ] E^n_i+ \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} +\phi_i e^n_i + \theta_i)]] 337 [[latex(e^{n+1}_i = e^n_i + \epsilon_i \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right ) \right ] )]] 338 339 In this case the first equation decouples and can be solved on it's own, and then the solution plugged back into the second equation to solve for the new energy. 331 [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha_{i+1/2} + \alpha_{i-1/2} + \frac{\epsilon_i}{ 1 +\psi \phi_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha_{i+1/2} + \alpha_{i-1/2} +\frac{\epsilon_i }{ 1 +\psi \phi_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha_{i-1/2} \right ) E^{n}_{i-1} + \frac{\theta_i}{ 1 +\psi \phi_i}})]] 332 333 334 This equation decouples and can be solved on it's own, and then the solution plugged back into the second equation to solve for the new energy. 340 335 341 336 … … 348 343 For the initial solution vector, we can just use Edot from the parent update (or last time step if we are on the coarse grid) to guess E, and then we can solve for the new e given our guess at the new E using the same time stepping (Backward Euler, Crank Nicholson, etc...). 349 344 350 [[latex(E^{n+1}_i = E^{n}_i+\dot{E}^{ n}_i \Delta t)]]351 [[latex(e^{n+1}_i = \frac{1}{1+\psi \phi^n_i} \left \{ \left ( \psi \epsilon^n_i \right )E^{n+1}_i + \left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n \right \} )]]345 [[latex(E^{n+1}_i = E^{n}_i+\dot{E}^{I}_i \Delta t)]] 346 [[latex(e^{n+1}_i = e^n_i + \frac{1}{1+\psi \phi^n_i} \left \{ \left ( \psi \epsilon^n_i \right )E^{n+1}_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n \right \} )]] 352 347 353 348 == Coarse-Fine Boundaries ==