Changes between Version 18 and Version 19 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/20/13 09:17:07 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v18 v19  
    107107== Implicit Discretization ==
    108108
    109 For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update.  In this case we can solve the radiation energy equation:
    110 
    111 ||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B-cE) = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]   ||
    112 ||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B-cE))]]   ||
     109For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update and we will treat the energy as the total internal energy ignoring kinetic and magnetic contributions.  In this case we can solve the radiation energy equations:
     110
     111||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B(T)-cE) = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B(T)-cE))]]   ||
     112||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B(T)-cE))]]   ||
    113113
    114114where [[latex(\mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla E)]]
     115
     116=== Expanding about e,,0,, ===
     117
     118Of course even if the opacity is independent of energy and radiation energy, the above combined system of equations is still non-linear due to the dependence on Temperature of the Planck Function [[latex(B(T))]].
     119
     120If we ignore the changes in the Temperature due to heating during the implicit step which would feed back into the source function.  We can improve this by writing
     121
     122[[latex(B(T) = B \left ( T_0+dT \right ) = B \left ( T_0 \right ) + \left . \frac{\partial B}{\partial T} \right | _{T_0} \frac{\partial T}{\partial e} de = \frac{c}{4 \pi} a_R \left ( T_0^4 + 4T_0^3\Gamma de \right ) = B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right ) )]]
     123
     124where
     125
     126[[latex(\Gamma = \frac{dT}{dE} = \frac{(\gamma-1)}{n k_B})]]
     127
     128Then the system of equations becomes
     129
     130||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   ||
     131||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   ||
    115132
    116133
     
    151168
    152169[[latex(e^{n+1}_i =  e^n_i + \epsilon^n_i \left (  E^{n+1}_i -\frac{4\pi}{c}B \left (T^n_i \right ) \right ))]]
    153 
    154 === Expanding about e,,0,, ===
    155 
    156 Of course the above system is only linear if we ignore the changes in the Temperature due to heating during the implicit step which would feed back into the source function.  We can improve this by writing [[latex(B(T) = \frac{c}{4 \pi} a_RT^4 = \frac{c}{4 \pi} \left ( \frac{2}{n f k_B} \right ) ^4 a_R e^4 = \frac{c}{4 \pi} A_R e^4 = A_R e_0^4 \left ( 1 + 4 \delta + 6 \delta^2 + ... \right ))]]
    157 
    158 where [[latex(e = e_0 \left ( 1 + \delta \right ) )]]
    159 
    160 Then the system of equations becomes
    161 
    162 ||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E +  c \kappa_{0P} \left [ A_R e_0^4 \left ( 1 + 4 \delta \right ) -E \right ] )]]   ||
    163 ||   [[latex(\frac{\partial \delta}{\partial t} = - \frac{c \kappa_{0P}}{e_0} \left [ \left (1+4 \delta \right )-E \right ] )]]   ||
    164 
    165 or equivalently
    166 
    167 ||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E +  \kappa_{0P} \left [ 4 \pi B \left ( T_0 \right ) \left ( 1 + 4 \delta \right ) -cE \right ] )]]   ||
    168 ||   [[latex(\frac{\partial \delta}{\partial t} = - \frac{ \kappa_{0P}}{e_0} \left [ 4 \pi B \left ( T_0 \right ) \left ( 1+4 \delta \right ) -cE \right ] )]]   ||
    169 
    170170
    171171