Changes between Version 189 and Version 190 of FluxLimitedDiffusion


Ignore:
Timestamp:
04/05/13 13:25:25 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v189 v190  
    488488[[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 + \psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]]
    489489
     490or
     491
     492[[latex(e^{n+1}_i = e^{n}_i + \frac{1}{1 + \psi \phi_i} \left ( -\theta_i + \epsilon_i E^*_i \omega_i v^n_{x,i} \left ( E^*_{i+1}-E^*_{i-1} \right ) - \xi_i E^* \right ) )]]
     493
     494
    490495Then if we take the semi-discretized equation for E
    491496
    492   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi  e^n_i -  \psi \phi e^{n+1}_i \right ) )]] 
     497  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi_i  e^n_i -  \psi \phi_i e^{n+1}_i \right ) )]] 
    493498
    494499and then plugin the solution for e^n+1^,,i,, we get
    495500
    496   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi e^n_i - \psi \phi e^n_i - \frac{\psi \phi }{1+\psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right ) \right ) \right ) )]] 
     501  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi_i e^n_i - \psi \phi_i e^n_i - \frac{\psi \phi_i }{1+\psi \phi_i} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right ) \right ) \right ) )]] 
    497502
    498503which simplifies to
    499504
    500   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1+\psi \phi} \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]] 
     505  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1+\psi \phi_i} \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]] 
    501506
    502507Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use \(E^{n+1}\) and \(E^n\) to construct \(E^*\) which we can plug into the equation for \(e^{n+1}\)
     
    526531
    527532which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \left | \frac{\partial e}{\partial t} \right | } = \xi \frac{T_0}{4 \Gamma \left | - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E  \right | } )]]
     533
     534or in discretized form
     535
     536[[latex(\xi \frac{T^n_i}{4 \Gamma \left | \frac{1}{1 + \psi \phi_i} \left ( -\theta_i + \epsilon_i E^*_i \omega_i v^n_{x,i} \left ( E^*_{i+1}-E^*_{i-1} \right ) - \xi_i E^* \right ) \right |} )]]
    528537
    529538
     
    556565and
    557566
    558 [[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]]
    559 
    560 and
    561 
    562 [[latex(\phi = \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
    563 
    564 and
    565 
    566 [[latex(\theta = - \Delta t f(e^n_i) =  \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) )]]
     567[[latex(\epsilon_i=c\Delta t \kappa_{0P,i})]]
     568
     569and
     570
     571[[latex(\phi_i- = \Delta t 4 \pi \kappa_{0P,i} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
     572
     573and
     574
     575[[latex(\theta_i = - \Delta t f(e^n_i) =  \Delta t 4 \pi \kappa_{0P,i} B \left ( T^n_i \right ) )]]
    567576
    568577and
     
    572581and
    573582
    574 [[latex(\xi = \Delta t \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c} )]]
    575 and
    576 
    577 where [[latex( \kappa_{0R,i+1/2} = \frac{\kappa^n_{0R,i}+\kappa^n_{0R,i+1}}{2} )]]
     583[[latex(\xi_i = \Delta t \frac{3-R_{2,i}}{2}\kappa_{0P,i}\frac{v_i^2}{c} )]]
     584and
     585
     586where [[latex( \kappa_{0R,i+1/2} = \frac{\kappa_{0R,i}+\kappa_{0R,i+1}}{2} )]]
    578587
    579588and