Changes between Version 189 and Version 190 of FluxLimitedDiffusion
- Timestamp:
- 04/05/13 13:25:25 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v189 v190 488 488 [[latex(e^{n+1}_i = e^{n}_i + \frac{\Delta t}{1 + \psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E^*,\nabla E^* \right ) \right ) )]] 489 489 490 or 491 492 [[latex(e^{n+1}_i = e^{n}_i + \frac{1}{1 + \psi \phi_i} \left ( -\theta_i + \epsilon_i E^*_i \omega_i v^n_{x,i} \left ( E^*_{i+1}-E^*_{i-1} \right ) - \xi_i E^* \right ) )]] 493 494 490 495 Then if we take the semi-discretized equation for E 491 496 492 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi e^n_i - \psi \phi e^{n+1}_i \right ) )]]497 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c \lambda}{\kappa_{0R}} \nabla E - \nabla \cdot \left ( \frac{3-R_2}{2} \mathbf{v} E \right ) - f \left ( e^n_i \right ) - g \left ( E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi_i e^n_i - \psi \phi_i e^{n+1}_i \right ) )]] 493 498 494 499 and then plugin the solution for e^n+1^,,i,, we get 495 500 496 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi e^n_i - \psi \phi e^n_i - \frac{\psi \phi }{1+\psi \phi} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right ) \right ) \right ) )]]501 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - f \left (e^n_i \right ) - g \left (E, \nabla E \right ) - \frac{1}{\Delta t} \left ( \psi \phi_i e^n_i - \psi \phi_i e^n_i - \frac{\psi \phi_i }{1+\psi \phi_i} \left ( f \left ( e^n_i \right ) + g \left (E,\nabla E \right ) \right ) \right ) )]] 497 502 498 503 which simplifies to 499 504 500 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1+\psi \phi } \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]]505 [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) - \frac{1}{1+\psi \phi_i} \left ( f \left ( e^n_i \right ) + g \left ( E,\nabla E \right ) \right ) )]] 501 506 502 507 Now we have 1 equation with 1 variable that we can solve implicitly using hypre, and then we can use \(E^{n+1}\) and \(E^n\) to construct \(E^*\) which we can plug into the equation for \(e^{n+1}\) … … 526 531 527 532 which gives [[latex(\Delta t < \xi \frac{T_0}{4 \Gamma \left | \frac{\partial e}{\partial t} \right | } = \xi \frac{T_0}{4 \Gamma \left | - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E -\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E \right | } )]] 533 534 or in discretized form 535 536 [[latex(\xi \frac{T^n_i}{4 \Gamma \left | \frac{1}{1 + \psi \phi_i} \left ( -\theta_i + \epsilon_i E^*_i \omega_i v^n_{x,i} \left ( E^*_{i+1}-E^*_{i-1} \right ) - \xi_i E^* \right ) \right |} )]] 528 537 529 538 … … 556 565 and 557 566 558 [[latex(\epsilon ^n_i=c\Delta t \kappa^n_{0P,i})]]559 560 and 561 562 [[latex(\phi = \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]563 564 and 565 566 [[latex(\theta = - \Delta t f(e^n_i) = \Delta t 4 \pi \kappa^n_{0P,i} B \left ( T^n_i \right ) )]]567 [[latex(\epsilon_i=c\Delta t \kappa_{0P,i})]] 568 569 and 570 571 [[latex(\phi_i- = \Delta t 4 \pi \kappa_{0P,i} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]] 572 573 and 574 575 [[latex(\theta_i = - \Delta t f(e^n_i) = \Delta t 4 \pi \kappa_{0P,i} B \left ( T^n_i \right ) )]] 567 576 568 577 and … … 572 581 and 573 582 574 [[latex(\xi = \Delta t \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c} )]]575 and 576 577 where [[latex( \kappa_{0R,i+1/2} = \frac{\kappa ^n_{0R,i}+\kappa^n_{0R,i+1}}{2} )]]583 [[latex(\xi_i = \Delta t \frac{3-R_{2,i}}{2}\kappa_{0P,i}\frac{v_i^2}{c} )]] 584 and 585 586 where [[latex( \kappa_{0R,i+1/2} = \frac{\kappa_{0R,i}+\kappa_{0R,i+1}}{2} )]] 578 587 579 588 and