44 | | * What about the flux weighted opacity? |
45 | | * If the radiation is optically thick, then [[latex(\mathbf{F_0}(\nu_0) \propto -\nabla E_0(\nu_0)/\kappa_0(\nu_0) \propto -[\partial B(\nu_0, T_0) / \partial T_0](\nabla T_0)/\kappa_0(\nu_0))]] which gives: || [[latex(\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{})]] |
| 48 | == Flux limited diffusion == |
| 49 | |
| 50 | The flux limited diffusion approximation drops the radiation momentum equation in favor of |
| 51 | [[latex(\mathbf{F}_0=-\frac{c\lambda}{\kappa_{0R}}\nabla E_0)]] |
| 52 | |
| 53 | where [[latex(\lambda)]] is the flux-limiter |
| 54 | |
| 55 | || [[latex(\lambda = \frac{1}{R} \left ( \coth R - \frac{1}{R} \right ) )]] || |
| 56 | || [[latex(R=\frac{|\nabla E_0|}{\kappa_{0R}E_0})]] || |
| 57 | |
| 58 | which corresponds to a pressure tensor |
| 59 | |
| 60 | || [[latex(\mathbf{P}_0=\frac{E_0}{2}[(1-R_2)\mathbf{I}+(3R_2-1)\mathbf{n}_0\mathbf{n}_0])]] || |
| 61 | || [[latex(R_2=\lambda+\lambda^2R^2)]] || |
| 62 | |
| 63 | |
| 64 | If we Lorentz boost the comoving terms into the lab frame and keep terms necessary to maintain accuracy we get: |
| 65 | |
| 66 | || [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P-\lambda \nabla E)]] || |
| 67 | || [[latex(\frac{\partial e}{\partial t} + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = -\kappa_{0P}(4 \pi B-cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E - \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E)]] || |
| 68 | || [[latex(\frac{\partial E}{\partial t} - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E = \kappa_{0P} (4 \pi B-cE) - \lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E + \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) )]] || |
| 69 | |