Changes between Version 1 and Version 2 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/12/13 15:15:36 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v1 v2  
    1313||  [[latex(\frac{\partial \rho}{\partial t} + \nabla \cdot \left ( \rho \mathbf{v} \right ) = 0)]]  ||
    1414||  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P+\mathbf{G})]]  ||
    15 ||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( \rho e + P \right ) \mathbf{v} \right ] = c G^0)]]  ||
     15||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = c G^0)]]  ||
    1616||  [[latex(\frac{\partial E}{\partial t} + \nabla \cdot \mathbf{F} = -c G_0 )]]  ||
    1717||  [[latex(\frac{1}{c^2} \frac{\partial \mathbf{F}}{\partial t} + \nabla \cdot \mathbf{P} = -\mathbf{G})]]  ||
     
    4141
    4242* If the radiation has a blackbody spectrum then [[latex(\kappa_{0E}=\kappa_{0P})]]
     43* If the radiation is optically thick, then
     44[[latex(\mathbf{F_0}(\nu_0) \propto -\nabla E_0(\nu_0)/\kappa_0(\nu_0) \propto -[\partial B(\nu_0, T_0) / \partial T_0](\nabla T_0)/\kappa_0(\nu_0))]]
     45 which implies that ||  [[latex(\kappa_{0F}^{-1}=\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{\int_0^\infty d \nu_0 [\partial B(\nu_0, T_0)/\partial T_0]})]]
     46* In the optically thin regime, [[latex(|\mathbf{F}_0(\nu_0)| \rightarrow cE_0(\nu_0))]] so we would have [[latex(\kappa_{0F}=\kappa_{0E})]] however assuming a blackbody temperature in the optically thin limit may be any more accurate than assuming that [[latex(\kappa_{0F}=\kappa_{0R})]]
    4347
    44 * What about the flux weighted opacity?
    45  * If the radiation is optically thick, then [[latex(\mathbf{F_0}(\nu_0) \propto -\nabla E_0(\nu_0)/\kappa_0(\nu_0) \propto -[\partial B(\nu_0, T_0) / \partial T_0](\nabla T_0)/\kappa_0(\nu_0))]] which gives: ||  [[latex(\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{})]]
     48== Flux limited diffusion ==
     49
     50The flux limited diffusion approximation drops the radiation momentum equation in favor of
     51[[latex(\mathbf{F}_0=-\frac{c\lambda}{\kappa_{0R}}\nabla E_0)]]
     52
     53where [[latex(\lambda)]] is the flux-limiter
     54
     55||  [[latex(\lambda = \frac{1}{R} \left ( \coth R - \frac{1}{R} \right ) )]]  ||
     56||  [[latex(R=\frac{|\nabla E_0|}{\kappa_{0R}E_0})]]   ||
     57
     58which corresponds to a pressure tensor
     59
     60||   [[latex(\mathbf{P}_0=\frac{E_0}{2}[(1-R_2)\mathbf{I}+(3R_2-1)\mathbf{n}_0\mathbf{n}_0])]]   ||
     61||   [[latex(R_2=\lambda+\lambda^2R^2)]]   ||
     62
     63
     64If we Lorentz boost the comoving terms into the lab frame and keep terms necessary to maintain accuracy we get:
     65
     66||  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P-\lambda \nabla E)]]  ||
     67||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = -\kappa_{0P}(4 \pi B-cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E - \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E)]]  ||
     68||  [[latex(\frac{\partial E}{\partial t} - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E = \kappa_{0P} (4 \pi B-cE) - \lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E + \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )  )]]  ||
     69