Changes between Version 20 and Version 21 of FluxLimitedDiffusion
- Timestamp:
- 03/20/13 10:30:29 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v20 v21 135 135 Which we can discretize for (1D) as 136 136 137 || [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} + 4\Gamma \frac{e^{*}_i}{T^n_i} \right ) -E^{*}_i \right ) )]] || 138 || [[latex(e^{n+1}_i-e^{n}_i = - \epsilon^n_i \left ( \frac{4 \pi}{c} B\left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} + 4\Gamma \frac{e^{*}_i}{T^n_i} \right ) - E^{*}_i \right ) )]] || 139 140 141 142 143 144 || [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1}-E^{n+1}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{n+1}_{i}-E^{n+1}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]] || 145 || [[latex(e^{n+1}_i-e^{n}_i = - \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]] || 146 137 || [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i + \phi^n_i e^{*}_i + \theta^n_i) )]] || 138 || [[latex(e^{n+1}_i-e^{n}_i = + \epsilon^n_i E^{*}_i - \phi^n_i e^{*}_i - \theta^n_i )]] || 147 139 148 140 where 149 141 150 142 [[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]] 143 144 represents the number of absorption/emissions during the time step 145 146 and the diffusion coefficient is given by 147 148 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2} \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right ))]] 149 150 and 151 152 [[latex(\theta = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} \right ) )]] 153 [[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]] 154 155 156 and we have 151 157 152 158 [[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right ) )]] 153 154 and155 156 [[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]]157 158 represents the number of absorption/emissions during the time step159 160 and the diffusion coefficient is given by161 162 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2} \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right ))]]163 164 where165 159 166 160 [[latex(R_{i+1/2} = \frac{\left | E_{i+1}-E_{i} \right | }{2 \kappa_{i+1/2} \left ( E_i+E_{i+1} \right )})]]