Changes between Version 21 and Version 22 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/20/13 11:13:01 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v21 v22  
    138138||   [[latex(e^{n+1}_i-e^{n}_i = + \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   ||
    139139
    140 where
     140where the diffusion coefficient is given by
     141
     142[[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2}  \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa^n_{i}+\kappa^n_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = \frac{1}{R_{i+1/2}} \left ( \coth R_{i+1/2} - \frac{1}{R_{i+1/2}} \right ) )]]
     143and where
     144[[latex(R_{i+1/2} = \frac{\left | E^n_{i+1}-E^n_{i} \right | }{2 \kappa_{i+1/2} \left ( E^n_i+E^n_{i+1} \right )})]]
     145
     146
     147and
    141148
    142149[[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]]
     
    144151represents the number of absorption/emissions during the time step
    145152
    146 and the diffusion coefficient is given by
    147 
    148 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2}  \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right ))]]
    149153
    150154and
    151155
     156[[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
     157
    152158[[latex(\theta = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} \right ) )]]
    153 [[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]]
    154 
    155 
    156 and we have
    157 
    158 [[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right ) )]]
    159 
    160 [[latex(R_{i+1/2} = \frac{\left | E_{i+1}-E_{i} \right | }{2 \kappa_{i+1/2} \left ( E_i+E_{i+1} \right )})]]
    161 
    162 
    163 This gives matrix coefficients
     159
     160
     161and we can think of the radiative flux as
     162
     163[[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{*}_{i+1} - E^{*}_i \right ) )]]
     164
     165
     166Now all the terms on the right hand side that are linear in E or e have been written as E^*^ because there are different ways to approximate E^*^.  For Backward Euler we have
     167[[latex(E^*_i = E^{n+1}_i)]]
     168and for Crank Nicholson we have
     169[[latex(E^*_i = \frac{1}{2} \left ( E^{n+1}_i + E^n_i \right ) )]]
     170or we can parameterize the solution
     171[[latex(E^*_i = \upsilon E^{n+1}_i + \bar{\upsilon}E^n_i)]]
     172where [[latex(\bar{\upsilon} = 1-\upsilon)]]
     173
     174Backward Euler has [[latex(\upsilon=1)]] and Crank Nicholson has [[latex(\upsilon=1/2)]]
     175
     176Forward Euler has [[latex(\upsilon=0)]]
     177
     178In any event in 1D we have the following matrix coefficients
    164179
    165180||   [[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]   ||