Changes between Version 21 and Version 22 of FluxLimitedDiffusion
- Timestamp:
- 03/20/13 11:13:01 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v21 v22 138 138 || [[latex(e^{n+1}_i-e^{n}_i = + \epsilon^n_i E^{*}_i - \phi^n_i e^{*}_i - \theta^n_i )]] || 139 139 140 where 140 where the diffusion coefficient is given by 141 142 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2} \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa^n_{i}+\kappa^n_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = \frac{1}{R_{i+1/2}} \left ( \coth R_{i+1/2} - \frac{1}{R_{i+1/2}} \right ) )]] 143 and where 144 [[latex(R_{i+1/2} = \frac{\left | E^n_{i+1}-E^n_{i} \right | }{2 \kappa_{i+1/2} \left ( E^n_i+E^n_{i+1} \right )})]] 145 146 147 and 141 148 142 149 [[latex(\epsilon^n_i=c\Delta t \kappa^n_{0P,i})]] … … 144 151 represents the number of absorption/emissions during the time step 145 152 146 and the diffusion coefficient is given by147 148 [[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2} \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right ))]]149 153 150 154 and 151 155 156 [[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]] 157 152 158 [[latex(\theta = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} \right ) )]] 153 [[latex(\phi = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( \frac{4\Gamma}{T^n_i} \right ) )]] 154 155 156 and we have 157 158 [[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right ) )]] 159 160 [[latex(R_{i+1/2} = \frac{\left | E_{i+1}-E_{i} \right | }{2 \kappa_{i+1/2} \left ( E_i+E_{i+1} \right )})]] 161 162 163 This gives matrix coefficients 159 160 161 and we can think of the radiative flux as 162 163 [[latex(\frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{*}_{i+1} - E^{*}_i \right ) )]] 164 165 166 Now all the terms on the right hand side that are linear in E or e have been written as E^*^ because there are different ways to approximate E^*^. For Backward Euler we have 167 [[latex(E^*_i = E^{n+1}_i)]] 168 and for Crank Nicholson we have 169 [[latex(E^*_i = \frac{1}{2} \left ( E^{n+1}_i + E^n_i \right ) )]] 170 or we can parameterize the solution 171 [[latex(E^*_i = \upsilon E^{n+1}_i + \bar{\upsilon}E^n_i)]] 172 where [[latex(\bar{\upsilon} = 1-\upsilon)]] 173 174 Backward Euler has [[latex(\upsilon=1)]] and Crank Nicholson has [[latex(\upsilon=1/2)]] 175 176 Forward Euler has [[latex(\upsilon=0)]] 177 178 In any event in 1D we have the following matrix coefficients 164 179 165 180 || [[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]] ||