Changes between Version 22 and Version 23 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/20/13 11:37:49 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v22 v23  
    136136
    137137||   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) )]]   ||
    138 ||   [[latex(e^{n+1}_i-e^{n}_i = + \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   ||
     138||   [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   ||
    139139
    140140where the diffusion coefficient is given by
     
    164164
    165165
    166 Now all the terms on the right hand side that are linear in E or e have been written as E^*^ because there are different ways to approximate E^*^.  For Backward Euler we have
     166Now all the terms on the right hand side that are linear in E or e have been written as E^*^ or e^*^ because there are different ways to approximate E^*^ (e^*^).  For Backward Euler we have
    167167[[latex(E^*_i = E^{n+1}_i)]]
    168168and for Crank Nicholson we have
    169169[[latex(E^*_i = \frac{1}{2} \left ( E^{n+1}_i + E^n_i \right ) )]]
    170170or we can parameterize the solution
    171 [[latex(E^*_i = \upsilon E^{n+1}_i + \bar{\upsilon}E^n_i)]]
    172 where [[latex(\bar{\upsilon} = 1-\upsilon)]]
    173 
    174 Backward Euler has [[latex(\upsilon=1)]] and Crank Nicholson has [[latex(\upsilon=1/2)]]
    175 
    176 Forward Euler has [[latex(\upsilon=0)]]
     171[[latex(E^*_i = \psi E^{n+1}_i + \bar{\psi}E^n_i)]]
     172where [[latex(\bar{\psi} = 1-\psi)]]
     173
     174Backward Euler has [[latex(\psi=1)]] and Crank Nicholson has [[latex(\psi=1/2)]]
     175
     176Forward Euler has [[latex(\psi=0)]]
    177177
    178178In any event in 1D we have the following matrix coefficients
    179179
    180 ||   [[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]   ||
    181 ||   [[latex(\left ( 1 \right ) e^{n+1}_i - \left ( \epsilon^n_i \right )E^{n+1}_i =e^n_i-\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]   ||
     180||   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\bar{\psi}\phi e^n_i + \theta^n_i)]]   ||
     181||   [[latex(\left ( 1 +\psi \phi \right ) e^{n+1}_i - \left ( \psi \epsilon^n_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi} \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-theta^i_n )]]   ||
    182182
    183183Clearly the second equation is trivial to solve after the first system of equations has been solved.  So if we treat the temperature as being constant we can calculate the local heating/cooling due to radiative emission/absorption