Changes between Version 28 and Version 29 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/20/13 12:30:02 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v28 v29  
    4343* If the radiation is optically thick, then
    4444[[latex(\mathbf{F_0}(\nu_0) \propto -\nabla E_0(\nu_0)/\kappa_0(\nu_0) \propto -[\partial B(\nu_0, T_0) / \partial T_0](\nabla T_0)/\kappa_0(\nu_0))]]
    45  which implies that || [[latex(\kappa_{0F}^{-1}=\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{\int_0^\infty d \nu_0 [\partial B(\nu_0, T_0)/\partial T_0]})]]
     45 which implies that [[latex(\kappa_{0F}^{-1}=\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{\int_0^\infty d \nu_0 [\partial B(\nu_0, T_0)/\partial T_0]})]]
    4646* In the optically thin regime, [[latex(|\mathbf{F}_0(\nu_0)| \rightarrow cE_0(\nu_0))]] so we would have [[latex(\kappa_{0F}=\kappa_{0E})]] however assuming a blackbody temperature in the optically thin limit may be any more accurate than assuming that [[latex(\kappa_{0F}=\kappa_{0R})]]
    4747
     
    5353where [[latex(\lambda)]] is the flux-limiter
    5454
    55 ||  [[latex(\lambda = \frac{1}{R} \left ( \coth R - \frac{1}{R} \right ) )]]  ||
    56 ||  [[latex(R=\frac{|\nabla E_0|}{\kappa_{0R}E_0})]]   ||
     55  [[latex(\lambda = \frac{1}{R} \left ( \coth R - \frac{1}{R} \right ) )]] 
     56  [[latex(R=\frac{|\nabla E_0|}{\kappa_{0R}E_0})]] 
    5757
    5858which corresponds to a pressure tensor
    5959
    60 ||   [[latex(\mathbf{P}_0=\frac{E_0}{2}[(1-R_2)\mathbf{I}+(3R_2-1)\mathbf{n}_0\mathbf{n}_0])]]   ||
    61 ||   [[latex(R_2=\lambda+\lambda^2R^2)]]   ||
     60   [[latex(\mathbf{P}_0=\frac{E_0}{2}[(1-R_2)\mathbf{I}+(3R_2-1)\mathbf{n}_0\mathbf{n}_0])]]   
     61   [[latex(R_2=\lambda+\lambda^2R^2)]]   
    6262
    6363
     
    6666
    6767
    68 ||   [[latex(G^0=\kappa_{0P} \left ( E-\frac{4 \pi B}{c} \right ) + \left ( \frac{\lambda}{c} \right ) \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \mathbf{v} \cdot \nabla E - \frac{\kappa_{0P}}{c^2} E \left [ \frac{3-R_2}{2}v^2 + \frac{3R_2-1}{2}(\mathbf{v} \cdot \mathbf{n})^2 \right ] + \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \kappa_{0P} \left ( E - \frac{4 \pi B}{c} \right ) )]]   ||
    69 ||   [[latex(\mathbf{G} = -\lambda \nabla E + \kappa_{0P} \frac{\mathbf{v}}{c} \left ( E - \frac{4 \pi B}{c} \right ) - \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \lambda \nabla E + 2 \lambda \left ( \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \frac{(\mathbf{v} \cdot \nabla E )\mathbf{v}}{c^2})]]   ||
     68   [[latex(G^0=\kappa_{0P} \left ( E-\frac{4 \pi B}{c} \right ) + \left ( \frac{\lambda}{c} \right ) \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \mathbf{v} \cdot \nabla E - \frac{\kappa_{0P}}{c^2} E \left [ \frac{3-R_2}{2}v^2 + \frac{3R_2-1}{2}(\mathbf{v} \cdot \mathbf{n})^2 \right ] + \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \kappa_{0P} \left ( E - \frac{4 \pi B}{c} \right ) )]]   
     69   [[latex(\mathbf{G} = -\lambda \nabla E + \kappa_{0P} \frac{\mathbf{v}}{c} \left ( E - \frac{4 \pi B}{c} \right ) - \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \lambda \nabla E + 2 \lambda \left ( \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \frac{(\mathbf{v} \cdot \nabla E )\mathbf{v}}{c^2})]]   
    7070
    7171= Numerics of Flux Limited Diffusion =
     
    7373If we plug the expressions for the radiation 4-momentum back into the gas equations and keep terms necessary to maintain accuracy we get:
    7474
    75 ||  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P\color{green}{-\lambda \nabla E})]]   ||
    76 ||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{green}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{blue}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E})]]  ||
    77 ||  [[latex(\frac{\partial E}{\partial t}  \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}  )]]  ||
     75  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P\color{green}{-\lambda \nabla E})]]   
     76  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{green}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{blue}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E})]] 
     77  [[latex(\frac{\partial E}{\partial t}  \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}  )]] 
    7878
    7979
     
    109109For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update and we will treat the energy as the total internal energy ignoring kinetic and magnetic contributions.  In this case we can solve the radiation energy equations:
    110110
    111 ||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B(T)-cE) = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B(T)-cE))]]   ||
    112 ||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B(T)-cE))]]   ||
     111   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B(T)-cE) = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B(T)-cE))]]   
     112   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B(T)-cE))]]   
    113113
    114114where [[latex(\mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla E)]]
     
    128128Then the system of equations becomes
    129129
    130 ||   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   ||
    131 ||   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   ||
     130   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   
     131   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   
    132132
    133133
     
    135135Which we can discretize for (1D) as
    136136
    137 ||   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) )]]   ||
    138 ||   [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   ||
     137   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) )]]   
     138   [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   
    139139
    140140where the diffusion coefficient is given by
     
    178178In any event in 1D we have the following matrix coefficients
    179179
    180 ||   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]]   ||
    181 ||   [[latex(\left ( 1 +\psi \phi^n_i \right ) e^{n+1}_i - \left ( \psi \epsilon^n_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n )]]   ||
     180   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]]   
     181   [[latex(\left ( 1 +\psi \phi^n_i \right ) e^{n+1}_i - \left ( \psi \epsilon^n_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n )]]   
    182182
    183183
    184184If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to replacing the term with [[latex(\psi \phi^n_i e^{n+1}_i)]] with [[latex(\psi \phi^n_i e^n_i)]] in which case the equations simplify to
    185185
    186 ||   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\phi^n_i e^n_i + \theta^n_i)]]   ||
    187 ||   [[latex(e^{n+1}_i = e^n_i + \epsilon^n_i  \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right )  \right ] )]]   ||
     186   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\phi^n_i e^n_i + \theta^n_i)]]   
     187   [[latex(e^{n+1}_i = e^n_i + \epsilon^n_i  \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right )  \right ] )]]   
    188188
    189189In this case the first equation decouples and can be solved on it's own, and then the solution plugged back into the second equation to solve for the new energy.