66 | | || [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P-\lambda \nabla E)]] || |
| 66 | |
| 67 | |
| 68 | || [[latex(G^0=\kappa_{0P} \left ( E-\frac{4 \pi B}{c} \right ) + \left ( \frac{\lambda}{c} \right ) \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \mathbf{v} \cdot \nabla E - \frac{\kappa_{0P}}{c^2} E \left [ \frac{3-R_2}{2}v^2 + \frac{3R_2-1}{2}(\mathbf{v} \cdot \mathbf{n})^2 \right ] + \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \kappa_{0P} \left ( E - \frac{4 \pi B}{c} \right ) )]] || |
| 69 | || [[latex(\mathbf{G} = -\lambda \nabla E + \kappa_{0P} \frac{\mathbf{v}}{c} \left ( E - \frac{4 \pi B}{c} \right ) - \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \lambda \nabla E + 2 \lambda \left ( \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \frac{(\mathbf{v} \cdot \nabla E )\mathbf{v}}{c^2})]] || |
| 70 | |
| 71 | which if we plug back into the gas equations and keep terms necessary to maintain accuracy we get: |
| 72 | |
| 73 | || [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P-\lambda \nabla E)]] || |