Changes between Version 34 and Version 35 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/20/13 14:19:14 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v34 v35  
    55= Physics of Radiation Transfer =
    66
    7 || [[latex(\tau = l \kappa=\frac{l}{\lambda_p})]] ||
    8 || [[latex(\beta = \frac{u}{c})]] ||
     7|| [[latex(\tau = l \kappa=\frac{l}{\lambda_p})]] || [[latex(\beta = \frac{u}{c})]] ||
    98|| [[latex(\tau << 1 )]] || streaming limit ||
    109|| [[latex(\tau >> 1 \mbox{, } \beta \tau << 1)]] || static diffusion limit ||
     
    1918||  [[latex(\frac{1}{c^2} \frac{\partial \mathbf{F}}{\partial t} + \nabla \cdot \mathbf{P} = -\mathbf{G})]]  ||
    2019
    21 where
     20where the moments of the specific intensity are defined as
    2221
    2322||  [[latex(cE=\int_0^\infty d \nu \int d \Omega I(\mathbf{n}, \nu))]]  ||
     
    2524||  [[latex(c\mathbf{P}=\int_0^\infty d \nu \int d \Omega \mathbf{nn} I(\mathbf{n}, \nu))]]  ||
    2625
    27 and
     26and the radiation 4-momentum is given by
    2827
    2928||   [[latex(cG^0 = \int_0^\infty d \nu \int d \Omega \left [ \kappa (\mathbf{n}, v)I(\mathbf{n}, \nu)-\eta(\mathbf{n},v) \right ])]]  ||
    3029||   [[latex(c\mathbf{G} = \int_0^\infty d \nu \int d \Omega \left [ \kappa (\mathbf{n}, v)I(\mathbf{n}, \nu)-\eta(\mathbf{n},v) \right ] \mathbf{n})]]  ||
    3130
     31If we had a closure relation for the radiation pressure then we could solve this system.  For gas particles, collisions tend to produce a Boltzmann Distribution which is isotropic and gives a pressure tensor that is a multiple of the identity tensor.  Photons do not "collide" with each other and they all have the same velocity 'c' but in various directions.  If the field were isotropic than [[latex(P^{ij}=\delta^{ij} 1/3 E)]] but in general [[latex(P^{ij}=f^{ij} E)]] where 'f' is the Eddington Tensor.
    3232
    3333== Simplifying assumptions ==