Changes between Version 35 and Version 36 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/21/13 10:28:49 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v35 v36  
    11[[PageOutline()]]
     2[[latex(\exp(x))]]
     3[[latex(exp(x))]]
    24
    35Most of what follows is taken from [http://adsabs.harvard.edu/abs/2007ApJ...667..626K Krumholz et al. 2007]
     
    193195
    194196
     197Now since the second equation has no spatial dependence, we can solve it for
     198   [[latex(e^{n+1}_i = \frac{1}{ 1 +\psi \phi^n_i}\left \{ \left ( \psi \epsilon^n_i \right )E^{n+1}_i + \left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n \right \} )]]   
     199and plug the result into the first equation to get a matrix equation involving only one variable.
     200
     201   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i-\frac{\phi^n_i \psi \epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}
     202=
     203
     204\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i +\frac{\psi \phi^n_i}{ 1 +\psi \phi^n_i}\left ( \bar{\psi} \epsilon^n_i \right ) E^n_i
     205
     206+ \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i
     207
     208+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n
     209
     210)]]   
     211
     212
     213
    195214If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to replacing the term with [[latex(\psi \phi^n_i e^{n+1}_i)]] with [[latex(\psi \phi^n_i e^n_i)]] in which case the equations simplify to
    196215
     
    199218
    200219In this case the first equation decouples and can be solved on it's own, and then the solution plugged back into the second equation to solve for the new energy. 
     220
    201221
    202222=== 2D etc... ===