Changes between Version 41 and Version 42 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/21/13 11:42:09 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v41 v42  
    189189In any event in 1D we have the following matrix coefficients
    190190
    191    [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]]   
     191   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} +\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]]   
    192192   [[latex(\left ( 1 +\psi \phi^n_i \right ) e^{n+1}_i - \left ( \psi \epsilon^n_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n )]]   
    193193
     
    198198and plug the result into the first equation to get a matrix equation involving only one variable.
    199199
    200    [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2}  +\frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]]   
     200   [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2}  +\frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]]   
    201201
    202202
     
    204204If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to replacing the term with [[latex(\psi \phi^n_i e^{n+1}_i)]] with [[latex(\psi \phi^n_i e^n_i)]] in which case the equations simplify to
    205205
    206    [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+\phi^n_i e^n_i + \theta^n_i)]]   
     206   [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+ \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} +\phi^n_i e^n_i + \theta^n_i)]]   
    207207   [[latex(e^{n+1}_i = e^n_i + \epsilon^n_i  \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right )  \right ] )]]   
    208208