Changes between Version 41 and Version 42 of FluxLimitedDiffusion
- Timestamp:
- 03/21/13 11:42:09 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
FluxLimitedDiffusion
v41 v42 189 189 In any event in 1D we have the following matrix coefficients 190 190 191 [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i +\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]]191 [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} +\bar{\psi}\phi^n_i e^n_i + \theta^n_i)]] 192 192 [[latex(\left ( 1 +\psi \phi^n_i \right ) e^{n+1}_i - \left ( \psi \epsilon^n_i \right )E^{n+1}_i =\left ( 1 - \bar{\psi}\phi^n_i \right ) e^n_i + \left ( \bar{\psi} \epsilon^n_i \right ) E^n_i-\theta^i_n )]] 193 193 … … 198 198 and plug the result into the first equation to get a matrix equation involving only one variable. 199 199 200 [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} +\frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \ frac{ \phi^n_i}{ 1 +\psi \phi^n_i} e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]]200 [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} +\frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i} e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]] 201 201 202 202 … … 204 204 If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to replacing the term with [[latex(\psi \phi^n_i e^{n+1}_i)]] with [[latex(\psi \phi^n_i e^n_i)]] in which case the equations simplify to 205 205 206 [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+ \phi^n_i e^n_i + \theta^n_i)]]206 [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+ \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} +\phi^n_i e^n_i + \theta^n_i)]] 207 207 [[latex(e^{n+1}_i = e^n_i + \epsilon^n_i \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right ) \right ] )]] 208 208