Changes between Version 4 and Version 5 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/18/13 12:49:27 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v4 v5  
    7171which if we plug back into the gas equations and keep terms necessary to maintain accuracy we get:
    7272
    73 ||  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P-\lambda \nabla E)]]   ||
    74 ||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = -\kappa_{0P}(4 \pi B-cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E - \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E)]]  ||
    75 ||  [[latex(\frac{\partial E}{\partial t} - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E = \kappa_{0P} (4 \pi B-cE) - \lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E + \frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )  )]]  ||
     73||  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P\color{green}{-\lambda \nabla E})]]   ||
     74||  [[latex(\frac{\partial e}{\partial t}  + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{green}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{blue}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E})]]  ||
     75||  [[latex(\frac{\partial E}{\partial t}  \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}  )]]  ||
    7676
     77For static diffusion, the terms in blue with v^2^/c can be dropped and the system can be split into the usual hydro update (black), radiative source terms (green) using time centered radiation energy, and a coupled implicit solve (red) for the radiation energy density and thermal energy density (ie temperature).  If the opacity is not temperature dependent, then the implicit solve only involves the radiation energy density.  If the opacity is not a linear function of the energy, then some form of sub-cycling would be required.
    7778
    78 For static diffusion, the terms with v^2^/c can be dropped and the system can be split into the usual hydro update, radiative source terms (using time centered radiation energy), and a coupled implicit solve for the radiation energy density and thermal energy density (ie temperature).  If the opacity is not temperature dependent, then the implicit solve only involves the radiation energy density.