112 | | [[CollapsibleStart(Implicit Equation)]] |
| 112 | [[CollapsibleStart(Explcit Update)]] |
| 113 | The extra terms in the explicit update due to radiation energy are as follows: |
| 114 | |
| 115 | [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) =-\lambda \nabla E)]] |
| 116 | [[latex(\frac{\partial e}{\partial t} = \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]] |
| 117 | [[latex(\frac{\partial E}{\partial t} = -\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) )]] |
| 118 | |
| 119 | These can be discretized as follows: |
| 120 | |
| 121 | [[latex(p^n+1_i=p^n_i - \frac{1}{2}\frac{\Delta t}{\Delta x} \lambda_{i} (E^n_{i+1}-E^n_{i-1})]] |
| 122 | |
| 123 | [[latex(e^n+1_i=e^n_i + \frac{1}{2}\frac{\Delta t}{\Delta x} \lambda_i \left ( 2 \frac{\kappa^n_i_{0P}}{\kappa^n_i_{0R}}-1 \right ) \left [ v_x^n_i \left (E^n_{i+1}-E^n_{i-1} \right ) \right ] )]] |
| 124 | |
| 125 | [[latex(E^n+1_i=E^n_i - \frac{\Delta t}{\Delta x} \left [ \frac{\lambda_i}{2} \left ( 2 \frac{\kappa^n_i_{0P}}{\kappa^n_i_{0R}}-1 \right ) \left [ v_x^n_i \left (E^n_{i+1}-E^n_{i-1} \right ) \right ] + \left ( F_{i+1/2}-F_{i-1/2} \right ) \right ])]] |
| 126 | |
| 127 | |
| 128 | [[CollapsibleStart(Implicit Update)]] |