Changes between Version 6 and Version 7 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/18/13 13:42:56 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v6 v7  
    7575||  [[latex(\frac{\partial E}{\partial t}  \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}  )]]  ||
    7676
    77 For static diffusion, the terms in blue with v^2^/c can be dropped and the system can be split into the usual hydro update (black), radiative source terms (green) using time centered radiation energy, and a coupled implicit solve (red) for the radiation energy density and thermal energy density (ie temperature).  If the opacity is not temperature dependent, then the implicit solve only involves the radiation energy density.  If the opacity is not a linear function of the energy, then some form of sub-cycling would be required.
     77For static diffusion, the terms in blue with v^2^/c can be dropped and the system can be split into the usual hydro update (black), radiative source terms (green) using time centered radiation energy, and a coupled implicit solve (red) for the radiation energy density and thermal energy density (ie temperature).  If the opacity is independent of temperature and radiation energy density, then the implicit solve only involves the radiation energy density.  Otherwise some sort of sub-cycling would be required.
    7878
    7979For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update.  In this case we can solve the radiation energy equation:
     
    8181[[latex(\frac{\partial E}{\partial t}  = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE))]]
    8282
     83Which we can discretize for (1D) as
     84
     85[[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1}-E^{n+1}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{n+1}_{i}-E^{n+1}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right ) )]]
     86
     87where
     88
     89[[latex(\epsilon^n_i=\frac{c\Delta t}{ \kappa^n_{0P,i}})]]
     90
     91represents the number of absorption/emissions during the time step
     92
     93and the diffusion coefficient is given by
     94
     95[[latex(\alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2}  \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right ))]]
     96
     97where
     98
     99[[latex(R_{i+1/2} = \frac{\left | E_{i+1}-E_{i} \right | }{2 \kappa_{i+1/2} \left ( E_i+E_{i+1} \right )})]]
    83100
    84101
     102This gives matrix coefficiencts
     103
     104[[latex(\left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right ) )]]