Changes between Version 83 and Version 84 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/27/13 22:37:47 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v83 v84  
    324324[[CollapsibleEnd()]]
    325325
    326 == OR ==
     326== Alternative Splitting Method ==
    327327
    328328  [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P\color{green}{-\lambda \nabla E})]]   
     
    376376
    377377 [[latex(\frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) =-\lambda \nabla E)]]   
    378  [[latex(\frac{\partial e}{\partial t}  = \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]] 
    379  [[latex(\frac{\partial E}{\partial t}  = -\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) )]] 
     378 [[latex(\frac{\partial E}{\partial t}  = -\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right ) )]] 
    380379
    381380These can be discretized as follows:
     
    383382 [[latex(p^{n+1}_i=p^n_i - \frac{1}{2}\frac{\Delta t}{\Delta x} \lambda_{i} \left ( E^n_{i+1}-E^n_{i-1} \right ) )]]
    384383
    385  [[latex(e^{n+1}_i=e^n_i + \frac{1}{2}\frac{\Delta t}{\Delta x} \lambda_i \left ( 2 \frac{\kappa^n_{i,0P}}{\kappa^n_{i,0R}}-1 \right ) \left ( v^n_i \left ( E^n_{i+1}-E^n_{i-1} \right ) \right ) )]] 
    386 
    387  [[latex(E^{n+1}_i=E^n_i - \frac{\Delta t}{\Delta x} \left ( \frac{\lambda_i}{2} \left ( 2 \frac{\kappa^n_{i,0P}}{\kappa^n_{i,0R}}-1 \right ) \left ( v^n_i \left ( E^n_{i+1}-E^n_{i-1} \right ) \right ) + \left ( F_{i+1/2}-F_{i-1/2} \right ) \right ))]] 
     384 [[latex(E^{n+1}_i=E^n_i + \frac{\Delta t}{\Delta x} \left ( F_{i+1/2}-F_{i-1/2} \right ) \right ))]] 
    388385
    389386where
     
    393390
    394391[[latex(R_{2,i+1/2} = \lambda_{i+1/2}+\lambda_{i+1/2}^2 R_{i+1/2}^2)]]
     392
    395393and
    396394[[latex(R_{i+1/2} = \frac{\left | E^n_{i+1}-E^n_{i} \right | }{2 \kappa_{0R,i+1/2} \left ( E^n_i+E^n_{i+1} \right )})]]
     
    411409[[CollapsibleEnd()]]
    412410
    413 [[CollapsibleStart(Implicit Update 1)]]
    414 == Implicit Update 1 ==
     411[[CollapsibleStart(Implicit Update 2)]]
     412== Implicit Update 2 ==
    415413
    416414For now we will assume that [[latex(\kappa_{0P})]] and [[latex(\kappa_{0R})]] are constant over the implicit update and we will treat the energy as the total internal energy ignoring kinetic and magnetic contributions.  In this case we can solve the radiation energy equations:
    417415
    418    [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B(T)-cE) = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B(T)-cE))]]   
    419    [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B(T)-cE))]]   
    420 
    421 where [[latex(\mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla E)]]
     416  [[latex(\frac{\partial e}{\partial t}  = -\kappa_{0P}(4 \pi B-cE) + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]] 
     417  [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B(T)-cE) -\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E )]] 
    422418
    423419=== Expanding about e,,0,, ===
     
    435431Then the system of equations becomes
    436432
    437    [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   
    438    [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] )]]   
     433   [[latex(\frac{\partial E}{\partial t} = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} \left [4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] - \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]]   
     434   [[latex(\frac{\partial e}{\partial t} = - \kappa_{0P} \left [ 4 \pi B_0 \left ( 1 + 4\Gamma \frac{e-e_0}{T_0} \right )-cE \right ] + \lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E )]]   
    439435
    440436which will be accurate as long as [[latex(4\Gamma \frac{e-e_0}{T_0} < \xi << 1)]] or [[latex(\Delta e = e-e_0 < \xi \frac{T_0}{4 \Gamma})]]
     
    450446Which we can discretize for (1D) as
    451447
    452    [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) )]]   
    453    [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i )]]   
     448   [[latex(E^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{*}_{i+1}-E^{*}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{*}_{i}-E^{*}_{i-1} \right ) \right ] - \epsilon^n_i E^{*}_i  + \phi^n_i e^{*}_i  + \theta^n_i) - omega_{x,i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]   
     449   [[latex(e^{n+1}_i-e^{n}_i = \epsilon^n_i E^{*}_i  - \phi^n_i e^{*}_i  - \theta^n_i + omega_{x,i} v_{x,i} \left ( E^{*}_{i+1}-E^*_{i-1} \right ) )]]   
    454450
    455451where the diffusion coefficient is given by
     
    473469[[latex(\theta = \epsilon^n_i \frac{4 \pi}{c} B \left ( T^n_i \right ) \left ( 1 - 4\Gamma \frac{e^n_i}{T^n_i} \right ) )]]
    474470
     471and
     472
     473where [[latex(\omega_{x,i} = \frac{\Delta t}{\Delta x} \lambda_i \left ( \frac{\kappa_{0P},i}{\kappa_{0R,i}}-\frac{1}{2} \right ) )]]
    475474
    476475and we can think of the radiative flux as