Changes between Version 93 and Version 94 of FluxLimitedDiffusion


Ignore:
Timestamp:
03/27/13 23:47:57 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • FluxLimitedDiffusion

    v93 v94  
    503503and plug the result into the first equation to get a matrix equation involving only one variable.
    504504
    505    [[latex(\color{purple}{ \left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \left ( \alpha^n_{i+1/2} - \omega_i v_{x,i} \right ) \right ) E^{n+1}_{i+1} - \left ( \psi \left ( \alpha^n_{i-1/2} + \omega_i v_{x,i} \right ) \right ) E^{n+1}_{i-1} - \left ( \psi \phi^n_i \right ) e^{n+1}_i=\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i + \left ( \bar{\psi} \left ( \alpha^n_{i+1/2} - \omega_i v_{x,i} \right ) \right ) E^{n}_{i+1} + \left ( \bar{\psi} \left ( \alpha^n_{i-1/2} + \omega_i v_{x,i} \right ) \right ) E^{n}_{i-1} +\bar{\psi}\phi^n_i e^n_i + \theta^n_i})]]   
    506 
    507505   [[latex(\color{purple}{\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \frac{\epsilon^n_i}{ 1 +\psi \phi^n_i}\right ) \right ] E^{n+1}_i - \left ( \psi \left ( \alpha^n_{i+1/2}- \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n+1}_{i+1} - \left ( \psi \left ( \alpha^n_{i-1/2} + \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2}  + \frac{\epsilon^n_i }{ 1 +\psi \phi^n_i} \right ) \right ] E^n_i + \left ( \bar{\psi} \left ( \alpha^n_{i+1/2} - \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n}_{i+1} + \left ( \bar{\psi} \left ( \alpha^n_{i-1/2} + \frac{\omega_i v_{x,i}}{1+\psi \phi^n_i} \right ) \right ) E^{n}_{i-1} + \frac{ \phi^n_i}{ 1 +\psi \phi^n_i}  e^n_i+ \frac{1}{ 1 +\psi \phi^n_i}\theta^i_n})]]   
    508 
    509 
    510 
    511 If we ignore the change in the Planck function due to heating during the implicit solve, it is equivalent to setting [[latex(\psi \phi = 0)]]  This gives the following equations:
    512 
    513    [[latex(\left [ 1 + \psi \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^{n+1}_i - \left ( \psi \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \psi \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1} =\left [ 1 - \bar{\psi} \left( \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) \right ] E^n_i+ \left ( \bar{\psi} \alpha^n_{i+1/2} \right ) E^{n}_{i+1} + \left ( \bar{\psi} \alpha^n_{i-1/2} \right ) E^{n}_{i-1} +\phi^n_i e^n_i + \theta^n_i)]]   
    514    [[latex(e^{n+1}_i = e^n_i + \epsilon^n_i  \left [ \left ( \psi E^{n+1}_i + \bar{\psi} E^{n}_i \right ) - \frac{4 \pi}{c} B \left ( T^n_i \right )  \right ] )]]   
    515 
    516 In this case the first equation decouples and can be solved on it's own, and then the solution plugged back into the second equation to solve for the new energy. 
    517506
    518507