Physics of Radiation Transfer
tau = l \kappa=\frac{l}{\lambda_p
|
beta = \frac{u}{c
|
tau << 1 | streaming limit
|
tau >> 1 \mbox{, } \beta \tau << | static diffusion limit
|
tau >> 1 \mbox{, } \beta \tau >> | dynamic diffusion limit
|
Equations of Radiation Hydrodynamics
frac{\partial \rho}{\partial t} + \nabla \cdot \left ( \rho \mathbf{v} \right ) =
|
frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P+\mathbf{G
|
frac{\partial e}{\partial t} + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = c G^
|
frac{\partial E}{\partial t} + \nabla \cdot \mathbf{F} = -c G_0
|
frac{1}{c^2} \frac{\partial \mathbf{F}}{\partial t} + \nabla \cdot \mathbf{P} = -\mathbf{G
|
where
E=\int_0^\infty d \nu \int d \Omega I(\mathbf{n}, \nu
|
mathbf{F}=\int_0^\infty d \nu \int d \Omega \mathbf{n} I(\mathbf{n}, \nu
|
\mathbf{P}=\int_0^\infty d \nu \int d \Omega \mathbf{nn} I(\mathbf{n}, \nu
|
and
G^0 = \int_0^\infty d \nu \int d \Omega \left [ \kappa (\mathbf{n}, v)I(\mathbf{n}, \nu)-\eta(\mathbf{n},v) \right
|
\mathbf{G} = \int_0^\infty d \nu \int d \Omega \left [ \kappa (\mathbf{n}, v)I(\mathbf{n}, \nu)-\eta(\mathbf{n},v) \right ] \mathbf{n
|
Simplifying assumptions
- If the flux spectrum of the radiation is direction-independent then we can write the radiation four-force density in terms of the moments of the radiation field
^0=\gamma [ \gamma^2 \kappa_{0E} + (1-\gamma^2)\kappa_{0F}]E-\gamma \kappa_{0P}a_RT_0^4-\gamma(\mathbf{v} \cdot \mathbf{F}/c^2)[\kappa_{0F}-2\gamma^2(\kappa_{0F}-\kappa_{0E})] - \gamma^3(\kappa_{0F}-\kappa+{0E})(\mathbf{vv}) : \mathbf{P}/c^
|
mathbf{G} = \gamma \kappa_{0F}(\mathbf{F}/c)-\gamma \kappa_{0P}a_RT_0^4 (\mathbf{v}/c) - \left [ \gamma^3( \kappa_{0F} - \kappa_{0E})( \mathbf{v}/c)E + \gamma \kappa_{0F}(\mathbf{v}/c) \cdot \mathbf{P} \right ] + \gamma^3 ( \kappa_{0F} - \kappa_{0E}) \left [ 2 \mathbf{v} \cdot \mathbf{F}/c^3 - ( \mathbf{vv}) : \mathbf{P}/c^3 \right ] \mathbf{v}
|
where
kappa_{0P | comoving-frame Planck function weighted opacity
|
kappa_{0E | comoving-frame radiation energy weighted opacity
|
kappa_{0F | comoving-frame radiation flux weighted opacity
|
- If the radiation has a blackbody spectrum then kappa_{0E}=\kappa_{0P
- If the radiation is optically thick, then
mathbf{F_0}(\nu_0) \propto -\nabla E_0(\nu_0)/\kappa_0(\nu_0) \propto -[\partial B(\nu_0, T_0) / \partial T_0](\nabla T_0)/\kappa_0(\nu_0
which implies that kappa_{0F}^{-1}=\kappa_{0R}^{-1}=\frac{\int_0^\infty d \nu_0 \kappa_0(\nu_0)^{-1}[\partial B(\nu_0,T_0)/\partial T_0]}{\int_0^\infty d \nu_0 [\partial B(\nu_0, T_0)/\partial T_0]
|
- In the optically thin regime, \mathbf{F}_0(\nu_0)| \rightarrow cE_0(\nu_0 so we would have kappa_{0F}=\kappa_{0E however assuming a blackbody temperature in the optically thin limit may be any more accurate than assuming that kappa_{0F}=\kappa_{0R
Flux limited diffusion
The flux limited diffusion approximation drops the radiation momentum equation in favor of
mathbf{F}_0=-\frac{c\lambda}{\kappa_{0R}}\nabla E_
where lambd is the flux-limiter
lambda = \frac{1}{R} \left ( \coth R - \frac{1}{R} \right )
|
=\frac{|\nabla E_0|}{\kappa_{0R}E_0
|
which corresponds to a pressure tensor
mathbf{P}_0=\frac{E_0}{2}[(1-R_2)\mathbf{I}+(3R_2-1)\mathbf{n}_0\mathbf{n}_0
|
_2=\lambda+\lambda^2R^
|
If we Lorentz boost the comoving terms into the lab frame and keep terms necessary to maintain accuracy we get:
^0=\kappa_{0P} \left ( E-\frac{4 \pi B}{c} \right ) + \left ( \frac{\lambda}{c} \right ) \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \mathbf{v} \cdot \nabla E - \frac{\kappa_{0P}}{c^2} E \left [ \frac{3-R_2}{2}v^2 + \frac{3R_2-1}{2}(\mathbf{v} \cdot \mathbf{n})^2 \right ] + \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \kappa_{0P} \left ( E - \frac{4 \pi B}{c} \right )
|
mathbf{G} = -\lambda \nabla E + \kappa_{0P} \frac{\mathbf{v}}{c} \left ( E - \frac{4 \pi B}{c} \right ) - \frac{1}{2} \left ( \frac{v}{c} \right ) ^2 \lambda \nabla E + 2 \lambda \left ( \frac{\kappa_{0P}}{\kappa_{0R}} - 1 \right ) \frac{(\mathbf{v} \cdot \nabla E )\mathbf{v}}{c^2
|
which if we plug back into the gas equations and keep terms necessary to maintain accuracy we get:
frac{\partial }{\partial t} \left ( \rho \mathbf{v} \right ) + \nabla \cdot \left ( \rho \mathbf{vv} \right ) = -\nabla P\color{green}{-\lambda \nabla E
|
frac{\partial e}{\partial t} + \nabla \cdot \left [ \left ( e + P \right ) \mathbf{v} \right ] = \color{red}{-\kappa_{0P}(4 \pi B-cE)} \color{green}{+\lambda \left ( 2 \frac{\kappa_{0P}}{\kappa_{0R}}-1 \right ) \mathbf{v} \cdot \nabla E} \color{blue}{-\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E
|
frac{\partial E}{\partial t} \color{red}{ - \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} = \color{red}{\kappa_{0P} (4 \pi B-cE)} \color{green}{-\lambda \left(2\frac{\kappa_{0P}}{\kappa_{0R}}-1 \right )\mathbf{v}\cdot \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E \right )} \color{blue}{+\frac{3-R_2}{2}\kappa_{0P}\frac{v^2}{c}E}
|
For static diffusion, the terms in blue with v2/c can be dropped and the system can be split into the usual hydro update (black), radiative source terms (green) using time centered radiation energy, and a coupled implicit solve (red) for the radiation energy density and thermal energy density (ie temperature). If the opacity is independent of temperature and radiation energy density, then the implicit solve only involves the radiation energy density. Otherwise some sort of sub-cycling would be required.
For now we will assume that kappa_{0P and kappa_{0R are constant over the implicit update. In this case we can solve the radiation energy equation:
frac{\partial E}{\partial t} = \nabla \cdot \mathbf{F} + \kappa_{0P} (4 \pi B-cE) = \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E + \kappa_{0P} (4 \pi B-cE
|
frac{\partial e}{\partial t} = - \kappa_{0P} (4 \pi B-cE
|
where mathbf{F} = \frac{c\lambda}{\kappa_{0R}} \nabla
Which we can discretize for (1D) as
^{n+1}_i-E^{n}_i = \left [ \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1}-E^{n+1}_{i} \right ) - \alpha^n_{i-1/2} \left ( E^{n+1}_{i}-E^{n+1}_{i-1} \right ) \right ] + \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right )
|
^{n+1}_i-e^{n}_i = - \epsilon^n_i \left ( \frac{4 \pi}{c} B(T^n_i)-E^{n+1}_i \right )
|
where
frac{\Delta t}{\Delta x}\mathbf{F}^n_{i+1/2} = \alpha^n_{i+1/2} \left ( E^{n+1}_{i+1} - E^{n+1}_i \right )
and
epsilon^n_i=c\Delta t \kappa^n_{0P,i
represents the number of absorption/emissions during the time step
and the diffusion coefficient is given by
alpha_{i+1/2}=\frac{\Delta t}{\Delta x^2} \frac{c \lambda_{i+1/2}}{\kappa_{i+1/2}} \mbox{ where } \kappa_{i+1/2} = \frac{\kappa_{i}+\kappa_{i+1}}{2} \mbox{ and } \lambda_{i+1/2} = f \left ( R_{i+1/2} \right
where
_{i+1/2} = \frac{\left | E_{i+1}-E_{i} \right | }{2 \kappa_{i+1/2} \left ( E_i+E_{i+1} \right )
This gives matrix coefficients
left ( 1 + \alpha^n_{i+1/2} + \alpha^n_{i-1/2} + \epsilon^n_i \right ) E^{n+1}_i - \left ( \alpha^n_{i+1/2} \right ) E^{n+1}_{i+1} - \left ( \alpha^n_{i-1/2} \right ) E^{n+1}_{i-1}=E^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right )
|
left ( 1 \right ) e^{n+1}_i - \left ( \epsilon^n_i \right )E^{n+1}_i =e^n_i-\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right )
|
and for 2D the matrix coefficients would be
+\alpha^n_{i+1/2,j}+\alpha^n_{i-1/2,j}+\alpha^n_{i,j+1/2}+\alpha^n_{i,j-1/2}+\epsilon^n_i | ^{n+1}_{i,j
|
\alpha^n_{i-1/2,j | ^{n+1}_{i-1,j
|
\alpha^n_{i+1/2,j | ^{n+1}_{i+1,j
|
\alpha^n_{i,j-1/2 | ^{n+1}_{i,j-1
|
\alpha^n_{i,j+1/2 | ^{n+1}_{i,j+1
|
and the source term would be unchanged from 1D
^n_i+\frac{4\pi \epsilon^n_i}{c}B \left (T^n_i \right )
|
What about boundary conditions?
At coarse fine boundaries, we can use time interpolated energy fields and opacities.
At physical boundaries we can have the following
Open boundaries
We would like the radiation to leave at the free streaming limit. So
frac{c \lambda}{\kappa_{0R}} \nabla E = \mathbf{F} = cE\mathbf{n} = \frac{c \lambda_g}{\kappa_g}\frac{ \left ( E-E_g \right ) }{\Delta x
Clearly if we set _g = and lambda_g =\kappa_g \Delta we should get the correct flux.
This corresponds to an
alpha = c \frac{\Delta t}{\Delta x
So we would just modify alph and zero out the matrix coefficient to the ghost zone
Thermally emitting boundary
Another possible boundary condition would be to have the edge of the grid be adjacent to some thermal emitter. This corresponds to setting the radiation energy density in the ghost zones to the Planck function.
_g = \frac{4 \pi}{c} B(T_g however, we still need an opacity which could be defined from the fluid properties of the ghost region… This would essentially be a thermally emitting boundary with the temperature, density, opacity, etc… derived from the hydro boundary type. If the boundary type was extrapolating, and the density and temperature uniform, one could have a constant thermal energy spectrum… However we would need to either specify the opacity and temperature of the ghost zone - or the various fluid properties needed to reconstruct the opacity and temperature of the ghost zone - or make an extra call to set physicalBC - since this may happen in between a hydro step and a physical boundary update.
Reflecting Boundary
Reflecting boundary should be fairly straightforward. This an be achieved by setting alpha_g = which zeros out any flux - and has the same effect as setting ^{n+1}_g=E^{n+1}_
Constant radiative flux
To have a constant radiative flux we must have
alpha_g \left ( E^{n+1}_i-E^{n+1}_g \right ) = F_0 \frac{\Delta t}{\Delta x
Which we can solve for
^{n+1}_g = E^{n+1}_i - \frac{F_0 \Delta t}{\alpha_g \Delta x
but when we plug this into the coefficient matrix the terms with alpha_ cancel and we just get _0 \frac{\Delta t}{\Delta x in the source vector
So in summary
Boundary | alph |
|
Open | \frac{\Delta t}{\Delta x | 0
|
User-Defined opacity and Temperature | alpha_ | alpha_g \frac{4 \pi}{c} B(T_g
|
Reflecting | |
|
User-Defined Flux | | _0 \frac{\Delta t}{\Delta x
|