Changes between Version 28 and Version 29 of GravoTurbulence


Ignore:
Timestamp:
12/06/11 16:34:33 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • GravoTurbulence

    v28 v29  
    352352|| [[latex($\chi$)]] || nominal density contrast ||
    353353|| [[latex($n$)]] || number of child clumps ||
    354 || [[latex($\xi_c$)]] || ratio of child nominal density to child mean density ||
     354|| [[latex($\xi_c$)]] || ratio of child mean density to child nominal density ||
    355355
    356356These 10 quantities are related by the following 6 equations.
     
    366366[[latex($r_p=c_s\sqrt{\frac{\pi}{G\overline{\rho_p}}}$)]]  - jeans criterion
    367367
    368 [[latex($\frac{\rho_c}{\overline{\rho_c}}=\xi_c$)]]
     368[[latex($\frac{\overline{\rho_c}}{\rho_c}=\xi_c$)]]
    369369
    370370
    371371If we are given [[latex($r_p$)]], [[latex($n$)]], [[latex($\chi$)]] and [[latex($\xi_c$)]] we can solve for the other quantities...
    372372
    373 [[latex($r_c=\sqrt{\frac{f\overline{\rho_c}+\frac{1-f}{\chi} \rho_c}{\overline{\rho_c}}}r_p = \sqrt{f+\frac{1-f}{\chi} \xi_c}r_p = \sqrt{A f+B}r_p$)]] where [[latex($B=\frac{\xi_c}{\chi} \mbox{ and } A=1-B$)]]
     373[[latex($r_c=\sqrt{\frac{f\overline{\rho_c}+\frac{1-f}{\chi} \rho_c}{\overline{\rho_c}}}r_p = \sqrt{f+\frac{1-f}{\chi \xi_c}}r_p = \sqrt{A f+B}r_p$)]] where [[latex($B=\frac{1}{\chi\xi_c} \mbox{ and } A=1-B$)]]
    374374
    375375[[latex($f=n\left(\frac{r_c}{r_p}\right)^3=n \left(A f + B \right) ^{3/2}$)]]
     
    389389[[latex($-f^2+1=0$)]] and we recover correctly that [[latex($f=1$)]]
    390390
    391 What if we now have [[latex($n=1$)]] clump with a density contrast [[latex($\chi=2$)]] ?  [[latex($B=2$)]] and [[latex($A=-1$)]] and  the cubic becomes:
    392 
    393 [[latex($-f^3+5f^2-12f+8=0$)]]
    394 
    395 Surprisingly this cubic has no real positive roots!  To see why consider the radius ratio of the isolated parent and child clump.  From the Jeans relation, the child clump radius should be .7071  and it would occupy 35% of the volume.  This would then give a mean parent over density of 2*.35+.65 = 1.35 that will require the parent radius be shrunk.  This however will also increase the mean density at a rate faster then making the clump smaller can compensate for.  At higher density contrasts and lower filling fractions, this obstacle can be overcome and a solution exists.
    396 
    397 
    398 If we have multiple levels we can start on the highest level 'L' where [[latex($\xi_L=1$)]] and solve for the filling fraction for level 'L-1'.  This can then be used to calculate [[latex($\overline{\rho_{L-1}}$)]] and [[latex($\xi_{L-1}$)]] which then allows us to solve for the filling fraction for the next higher level and so on.  Finally once we have [[latex($\xi_0$)]] and [[latex($r_0$)]] we can calculate [[latex($\rho_0$)]] which can then be used to calculate [[latex($\rho_1,\rho_2,...,\rho_L$)]]
    399 
    400  - Highest level of clump has no children so mean density is nominal density.
     391What if we now have [[latex($n=1$)]] clump with a density contrast [[latex($\chi=2$)]] ?  [[latex($B=1/2$)]] and [[latex($A=1/2$)]] and  the cubic becomes:
     392
     393[[latex($f^3-5f^2+3f+1=0$)]]
     394
     395Surprisingly this cubic has no real positive roots between 0 and 1!  To see why consider the radius ratio of the isolated parent and child clump.  From the Jeans relation, the child clump radius should be .7071  and it would occupy 35% of the volume.  This would then give a mean parent over density of 2*.35+.65 = 1.35 that will require the parent radius be shrunk.  This however will also increase the mean density at a rate faster then making the clump smaller can compensate for.  At higher density contrasts and lower filling fractions, this obstacle can be overcome and a solution exists.
     396
     397
     398If we have multiple levels we can start on the highest level 'L' where [[latex($\xi_L=1$)]] and solve for the filling fraction for level 'L-1'.  This can then be used to calculate [[latex($\xi_{L-1} = f_{L-1}\chi\xi_L+(1-f_{L-1})$)]] which then allows us to solve for the filling fraction for the next higher level and so on.  Finally once we have [[latex($\xi_0$)]] and [[latex($r_0$)]] we can calculate [[latex($r_i=r_{i-1} f_{i-1}^{1/3}$)]] and [[latex($\rho_i=\frac{\mbox{JeansDensity}(r_i)}{\xi_i}$)]]
     399
     400
     401in 2D there are only a few modifications
     402
     403[[latex($f=n\left(\frac{r_c}{r_p}\right)^2=n \left(A f + B \right) ^{2/2} = n(A f + B)$)]]
     404
     405and we have [[latex($f=\frac{nB}{1-nA}=\frac{nB}{1-n(1-B)}=\frac{nB}{1-n+B}$)]]
     406
     407Note that [[latex($nB >= B >= 1-n+B$)]] for [[latex($n >= 1 \mbox{ and } B >> 0$)]] so [[latex($f >= 1$)]] which does not allow for any solutions of interest.
    401408
    402409== Velocity Perturbations ==