Changes between Version 33 and Version 34 of GravoTurbulence


Ignore:
Timestamp:
12/15/11 18:09:52 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • GravoTurbulence

    v33 v34  
    114114
    115115
    116 Unless the dense blobs are gravitationally confined.  But how to go from a power spectra of density fluctuations to a mass-size relation?  We have [[latex($\hat{\rho}(\mathbf{k}) \propto \exp^{A|k|^{\beta}}$)]]?  If [[latex($k << \lambda_k = c_s\sqrt{\frac{\pi}{G}} \rho^{-1/2}$)]] then the fluctuations should be jeans unstable - but \rho = }
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128Unless the dense blobs are gravitationally confined.  But how to go from a power spectra of density fluctuations to a mass-size relation?  We have [[latex($\hat{\rho}(\mathbf{k}) \propto \rho_0\exp^{A|k|^{\beta}}$)]]?  If [[latex($k << \lambda_k = c_s\sqrt{\frac{\pi}{G}} \rho^{-1/2}$)]] then the fluctuations should be jeans unstable - but [[latex($\rho(k) = \displaystyle{\int_{k_{min}}^k{\hat{\rho}(\mathbf{k}) \mathbf{dk^3}}}$)]].  If we consider the largest scales only, then [[latex($k_{min} << c_s\sqrt{\frac{\pi}{G}} \left( \rho_0 \exp(A k_{min}) \right )^{-1/2}$)]]
    117129
    118130