Changes between Version 33 and Version 34 of GravoTurbulence
- Timestamp:
- 12/15/11 18:09:52 (13 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
GravoTurbulence
v33 v34 114 114 115 115 116 Unless the dense blobs are gravitationally confined. But how to go from a power spectra of density fluctuations to a mass-size relation? We have [[latex($\hat{\rho}(\mathbf{k}) \propto \exp^{A|k|^{\beta}}$)]]? If [[latex($k << \lambda_k = c_s\sqrt{\frac{\pi}{G}} \rho^{-1/2}$)]] then the fluctuations should be jeans unstable - but \rho = } 116 117 118 119 120 121 122 123 124 125 126 127 128 Unless the dense blobs are gravitationally confined. But how to go from a power spectra of density fluctuations to a mass-size relation? We have [[latex($\hat{\rho}(\mathbf{k}) \propto \rho_0\exp^{A|k|^{\beta}}$)]]? If [[latex($k << \lambda_k = c_s\sqrt{\frac{\pi}{G}} \rho^{-1/2}$)]] then the fluctuations should be jeans unstable - but [[latex($\rho(k) = \displaystyle{\int_{k_{min}}^k{\hat{\rho}(\mathbf{k}) \mathbf{dk^3}}}$)]]. If we consider the largest scales only, then [[latex($k_{min} << c_s\sqrt{\frac{\pi}{G}} \left( \rho_0 \exp(A k_{min}) \right )^{-1/2}$)]] 117 129 118 130