| 6 | | $M_p$ |
| 7 | | $R_p$ |
| 8 | | $T_p$ |
| 9 | | $\rho_p$ |
| 10 | | $M_s$ |
| 11 | | $R_s$ |
| 12 | | $T_s$ |
| 13 | | $\rho_s$ |
| 14 | | $a$ |
| | 7 | || $M_p$ || Mass of planet || |
| | 8 | || $R_p$ || Radius of planet || |
| | 9 | || $T_p$ || Temperature at planet surface || |
| | 10 | || $\rho_p$ || Density at planet surface || |
| | 11 | || $M_s$ || Mass of star || |
| | 12 | || $R_s$ || Radius of star || |
| | 13 | || $T_s$ || Temperature at stellar surface || |
| | 14 | || $\rho_s$ || Density at stellar surface || |
| | 15 | || $a$ || orbital separation || |
| | 16 | |
| | 17 | Time and length symmetry allows us to fix the total mass and separation without loss of generality. In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality. So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction |
| 19 | | * $\chi = \rho_p / \rho_s $ |
| 20 | | * $\lambda_p=\frac{G M_p m_H}{R_p k_b T_p}$ |
| 21 | | * $\lambda_s=\frac{G M_s m_H}{R_s k_b T_s}$ |
| 22 | | * $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$ |
| 23 | | * $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3}$ |
| 24 | | * $v_{esc}=\sqrt{\frac{2 G M_p}{R_p}}$ |
| 25 | | * $r_\Omega=\frac{v_{esc}}{2 \Omega}$ |
| 26 | | * $q=\frac{M_p}{M_s}$ |
| 27 | | * $c_s=\frac{k_B T_s}{m_H}$ |
| 28 | | * $c_p=\frac{k_B T_p}{m_H}$ |
| 29 | | * $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ |
| | 27 | Now instead of those 6, we may want to define the following 5 length scales, and density ratio at the bow shock |
| | 28 | |
| | 29 | || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius || |
| | 30 | || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius || |
| | 31 | || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius || |
| | 32 | || $\xi_M=\frac{\lambda_p}{2} \xi_p$ || Ratio of sonic radius to planetary orbital radius || |
| | 33 | || $\chi_{bow}$ || Density ratio at bow shock. || |
| | 34 | || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius || |
| | 35 | |
| | 36 | Using the following relations, |
| | 37 | |
| | 38 | || $\Omega = \sqrt{\frac{G \left (M_s+M_p \right )}{a^3}}$ || orbital angular velocity || |
| | 39 | || $r_H=a \left (\frac{M_p}{3M_s} \right )^{1/3} = a \left ( \frac{q}{3} \right ) ^ {1/3}$ || Hill radius || |
| | 40 | || $c_s=\frac{k_B T_s}{m_H}$ || stellar sound speed || |
| | 41 | || $c_p=\frac{k_B T_p}{m_H}$ || planetary sound speed || |
| | 42 | || $r_{BH} = \frac{2 G M_p}{v_s(a)^2+(a\Omega)^2+c_s^2}$ || Bondi-Hoyle radius || |
| | 43 | || $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ || bow shock standoff distance || |
| | 44 | |
| | 45 | and the dimensionless solution to the Parker Wind |
| 40 | | |
| 41 | | * $r_{bow}=\mbox{solve} \left [ \rho_s(a-r_{bow}) v_s(a-r_{bow})^2 + P_s(a-r_{bow}) = \rho_p(r_{bow}) v_p(r_{bow})^2 +P_p(r_{bow}) \right ]$ |
| 42 | | |
| 43 | | |
| 44 | | Time and length symmetry allows us to fix the total mass and separation without loss of generality. In addition, the actual densities don't matter - just their ratios, so we can also fix the planetary density without loss of generality. So we can reduce the list of 9 primary variables to the following six dimensionless variables that define the interaction |
| 45 | | |
| 46 | | $q$, $\chi$, $\xi_p$, $\xi_s$, $\lambda_p$, $\lambda_s$ |
| 47 | | |
| 48 | | where $\xi_p=R_p/a$ and $\xi_s=R_s/a$ |
| 49 | | |
| 50 | | |
| 51 | | Now instead of those 6, we may want to define |
| 52 | | |
| 53 | | || $\xi_H=\frac{r_H}{a}$ || Ratio of Hill radius to orbital radius || |
| 54 | | || $\xi_{bow}=\frac{r_{bow}}{a}$ || Ratio of bow shock radius to orbital radius || |
| 55 | | || $\xi_p=\frac{R_p}{a}$ || Ratio of planetary radius to orbital radius || |
| 56 | | || $\xi_{\Omega}=\frac{r_\Omega}{a}$ || Ratio of centrifugal radius to orbital radius || |
| 57 | | || $\chi_{bow}$ || Density ratio at bow shock. || |
| 58 | | || $\xi_{BH}=\frac{r_{BH}}{R_a}$ || Ratio of bondi-hoyle radius to orbital radius || |
| 59 | | |
| 60 | | This then allows us to calculate |
| | 58 | We can directly calculate |
| | 64 | and numerically solve the following 3 equations for $\xi_s$, $\lambda_s$, and $\chi$ |
| | 65 | |
| | 66 | || $\xi_{BH}=\frac{2 \xi_s}{\psi\left ( \xi_s^{-1} \right) + \frac{q+1}{q} + \frac{1}{q \lambda_s}}$ || |
| | 67 | || $\chi_{bow}=\chi \frac{\phi \left ( \frac{\xi_{bow}}{\xi_p} \right )}{\phi \left ( \frac{1 - \xi_{bow}}{\xi_s} \right ) }$ || |
| | 68 | || $\frac{1+\psi\left ( \frac{ 1 - \xi_{bow}}{\xi_s} \right )}{1+\psi \left ( \frac{\xi_{bow}}{\xi_p} \right )} = \frac{q \lambda_s \xi_s \chi_{bow}}{\lambda_p \xi_p \chi}$ |
| | 69 | |
| | 70 | |
| | 71 | As a side note, we have |
| | 72 | || $\frac{v_{esc}}{c_p}=\sqrt{2 \lambda_p}$ || planetary escape speed || |
| | 73 | || $\xi_\Omega=\frac{v_{esc}}{2 a \Omega}=\frac{2q}{ (q + 1)\xi_p}$ || dimensionless radius at which coriolis forces bend planetary wind - not independent || |