Changes between Version 9 and Version 10 of SelfGravityDevel


Ignore:
Timestamp:
01/20/12 22:39:31 (13 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • SelfGravityDevel

    v9 v10  
    1414
    1515== Present Considerations ==
     16
     17
     18=== Some notes on periodic BC's and particles ===
     19With periodic boundary conditions, we would like the total potential to be unchanged under the conversion of gas to particle.  This requires adjusting the particle potential so that it has the same constant of integration as well as being periodic.  When hypre solves for the potential, the constant of integration is a free parameter and I believe hypre adjusts it so that [[latex($<\phi>=0$)]].  To calculate the potential of a point charge, we need the Greens function corresponding to
     20
     21 [[latex($\nabla_D^2 G(x,y) = \delta^D(x-y)$)]]
     22
     23 where D is the dimenesion of the problem.  For 3D,
     24
     25 [[latex($G(x,y)=\frac{-1}{4\pi|x-y|}$)]]
     26
     27 and for 2D,
     28
     29 [[latex($G(x,y)=\frac{\ln(|x-y|)}{2\pi}$)]]
     30
     31 and for 1D,
     32
     33 [[latex($G(x,y)=\frac{|x-y|}{2}$)]]
     34
     35Now with periodic BC's, the solution to the gas potential is given by
     36
     37 [[latex($\nabla^2 \phi = 4\pi G (\rho-\bar{\rho})$)]], so the solution to the potential would actually be given by [[latex($\phi(y)=-\int_V{\frac{M\delta(x-y)-M/V}{|x-y|}dx}$)]] where [[latex($M$)]] is the mass of the particle.  Note this is not the same as using mirror versions of the particle...  An easier way to solve this however, is to use fourier transforms. 
     38
     39 [[latex($k^2\hat{\phi}(k)=4\pi G\hat{\rho}(k)$)]] with [[latex($\hat{\phi}(0)=0$)]].  Now [[latex($\hat{\rho}(k)$)]] is just the fourier transform of a delta function times the mass, which is [[latex($M$)]], so [[latex($\hat\phi(k)=\frac{4\pi GM}{k^2}$)]] and [[latex($\phi(x)=4 \pi G M\int{\frac{1}{k^2}e^{ikx} dk}$)]]
     40
     41 This can be discretized as
     42
     43 [[latex($\phi(l)=4 \pi GM \Delta k^{D-2} \displaystyle \sum_{j=-N/2}^{N/2}{\frac{1}{j^2}e^{2\pi ijl/N}}=8 \pi GM (2 \pi/L)^{D-2} \displaystyle \sum_{j=1}^{N/2}{\frac{1}{j^2}\cos(2\pi jl/N)}$)]]
     44