| 10 | [[latex($E=\frac{1}{4\pi\epsilon_{0}}\frac{Q}{r}$)]] |
| 11 | |
| 12 | On the other hand, the gravitational acceleration by a point mass of [[latex($M$)]] is |
| 13 | |
| 14 | [[latex($g=-G\frac{M}{r^{2}}$)]] [[BR]] |
| 15 | |
| 16 | The Poisson equation for electrostatic potential [[latex($\phi_{e}$)]] is |
| 17 | |
| 18 | [[latex($\nabla^{2}\phi=-\frac{\rho}{\epsilon_{0}}$)]] |
| 19 | |
| 20 | Analytically we can get the Poisson equation for the gravity |
| 21 | |
| 22 | [[latex($\nabla^{2}\phi=4\pi G\rho$)]] |
| 23 | |
| 24 | where [[latex($\rho$)]] is the mass density. This equation describes how the potential [[latex($\phi$)]] is determined by the mass density distribution. |
| 25 | |
| 26 | For example, consider the uniform density distribution |
| 27 | |
| 28 | %%(latexrender) |
| 29 | [tex] |
| 30 | \rho=\begin{cases} \rho_{0}, &r<R \\ |
| 31 | 0, & r\ge R |
| 32 | \end{cases}$)]] |
| 33 | [\tex] |