Changes between Version 18 and Version 19 of SelfGravityDevel


Ignore:
Timestamp:
03/05/12 21:35:27 (13 years ago)
Author:
Baowei Liu
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • SelfGravityDevel

    v18 v19  
    6262}}}
    6363
     64=== Free-fall Time ===
     65
     66The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.
     67Using the Gauss's theorem, the gravitional acceleration $g_{r}$ is given by
     68{{{
     69#!latex
     70\begin{equation}\label{eq:graAcce}\tag{5}
     71g_{r}=-\frac{GM_{r}}{r^{2}}
     72\end{equation}
     73}}}
     74where [[latex($M_{r}$)]] is the mass inside [[latex($r$)]]
     75{{{
     76#!latex
     77\begin{equation}\label{eq:insideMass}\tag{6}
     78M_{r}=\int_{0}^{r}\rho4\pi r^{2}dr
     79\end{equation}
     80}}}
     81So the equation of motion for a gas molecule under a control of the self-gravity can be written as
     82{{{
     83#!latex
     84\begin{equation}\label{eq:motion}\tag{7}
     85\frac{d^{2}r}{dt^{2}}=-\frac{GM_{r}}{r^{2}}
     86\end{equation}
     87}}}
     88Equation (7) can be written as the form of the conservation of mechanical energy
     89{{{
     90#!latex
     91\begin{equation}\label{eq:conserE}\tag{8}
     92\frac{1}{2}\left(\frac{dr}{dt}\right)^{2}-\frac{GM_{r}}{r}=E
     93\end{equation}
     94}}}
     95Suppose the gas molecule is initially located at $r=R$. So the total energy
     96{{{
     97#!latex
     98\begin{equation}\label{eq:totalE}\tag{9}
     99E=-\frac{GM_{r}(R)}{R}
     100\end{equation}
     101}}}
     102Now assume [[latex($M_{r}\approx M_{r}(R)$)]]. Equation (8) gives
     103{{{
     104#!latex
     105\begin{equation}\label{eq:approx1}\tag{10}
     106\frac{dr}{dt}=-[2GM_{r}(R)]^{\frac{1}{2}}\left(\frac{1}{r}-\frac{1}{R} \right)^{\frac{1}{2}}
     107\end{equation}
     108}}}
     109Let [[latex($r=R\cos^{2}\eta$)]]. From the initial state we have [[latex($\eta(t=0)=0$)]]. So Equation (10) reduces to
     110{{{
     111#!latex
     112\begin{equation}\label{eq:reduced}\tag{11}
     113\cos^{2}\eta\frac{d\eta}{dt}=\left(\frac{GM_{r}(R)}{2R^{3}}\right)^{\frac{1}{2}}
     114\end{equation}
     115}}}
     116Solve Equation (11) we have
     117{{{
     118#!latex
     119\begin{equation}\label{eq:sol}\tag{12}
     120t=\left(\frac{R^{3}}{2GM_{r}(R)} \right)^{\frac{1}{2}}\left(\eta+\frac{\sin2\eta}{2} \right)
     121\end{equation}
     122}}}
     123Let [[latex($r=0$)]] or [[latex($\eta=\frac{\pi}{2}$)]]. we have the free-fall time
     124{{{
     125#!latex
     126\begin{equation}\ref{eq:freeFall}\tag{13}
     127\begin{aligned}
     128 t_{ff}&=\left(\frac{R^{3}}{2GM_{r}(R)}\right)^{\frac{1}{2}}\frac{\pi}{2}\\
     129       &=\left(\frac{3\pi}{32G\bar{\rho}}\right)^{\frac{1}{2}}
     130\end{aligned}
     131\end{equation}
     132}}}
     133where
     134{{{
     135#!latex
     136\begin{equation}\label{rhoBar}\tag{14}
     137\bar{\rho}=\frac{M_{r}(R)}{\frac{4\pi R^{3}}{3}}
     138\end{equation}
     139}}}
     140is the average density of the gas.
     141
     142
    64143== Implementation ==
    65144