| 64 | === Free-fall Time === |
| 65 | |
| 66 | The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. |
| 67 | Using the Gauss's theorem, the gravitional acceleration $g_{r}$ is given by |
| 68 | {{{ |
| 69 | #!latex |
| 70 | \begin{equation}\label{eq:graAcce}\tag{5} |
| 71 | g_{r}=-\frac{GM_{r}}{r^{2}} |
| 72 | \end{equation} |
| 73 | }}} |
| 74 | where [[latex($M_{r}$)]] is the mass inside [[latex($r$)]] |
| 75 | {{{ |
| 76 | #!latex |
| 77 | \begin{equation}\label{eq:insideMass}\tag{6} |
| 78 | M_{r}=\int_{0}^{r}\rho4\pi r^{2}dr |
| 79 | \end{equation} |
| 80 | }}} |
| 81 | So the equation of motion for a gas molecule under a control of the self-gravity can be written as |
| 82 | {{{ |
| 83 | #!latex |
| 84 | \begin{equation}\label{eq:motion}\tag{7} |
| 85 | \frac{d^{2}r}{dt^{2}}=-\frac{GM_{r}}{r^{2}} |
| 86 | \end{equation} |
| 87 | }}} |
| 88 | Equation (7) can be written as the form of the conservation of mechanical energy |
| 89 | {{{ |
| 90 | #!latex |
| 91 | \begin{equation}\label{eq:conserE}\tag{8} |
| 92 | \frac{1}{2}\left(\frac{dr}{dt}\right)^{2}-\frac{GM_{r}}{r}=E |
| 93 | \end{equation} |
| 94 | }}} |
| 95 | Suppose the gas molecule is initially located at $r=R$. So the total energy |
| 96 | {{{ |
| 97 | #!latex |
| 98 | \begin{equation}\label{eq:totalE}\tag{9} |
| 99 | E=-\frac{GM_{r}(R)}{R} |
| 100 | \end{equation} |
| 101 | }}} |
| 102 | Now assume [[latex($M_{r}\approx M_{r}(R)$)]]. Equation (8) gives |
| 103 | {{{ |
| 104 | #!latex |
| 105 | \begin{equation}\label{eq:approx1}\tag{10} |
| 106 | \frac{dr}{dt}=-[2GM_{r}(R)]^{\frac{1}{2}}\left(\frac{1}{r}-\frac{1}{R} \right)^{\frac{1}{2}} |
| 107 | \end{equation} |
| 108 | }}} |
| 109 | Let [[latex($r=R\cos^{2}\eta$)]]. From the initial state we have [[latex($\eta(t=0)=0$)]]. So Equation (10) reduces to |
| 110 | {{{ |
| 111 | #!latex |
| 112 | \begin{equation}\label{eq:reduced}\tag{11} |
| 113 | \cos^{2}\eta\frac{d\eta}{dt}=\left(\frac{GM_{r}(R)}{2R^{3}}\right)^{\frac{1}{2}} |
| 114 | \end{equation} |
| 115 | }}} |
| 116 | Solve Equation (11) we have |
| 117 | {{{ |
| 118 | #!latex |
| 119 | \begin{equation}\label{eq:sol}\tag{12} |
| 120 | t=\left(\frac{R^{3}}{2GM_{r}(R)} \right)^{\frac{1}{2}}\left(\eta+\frac{\sin2\eta}{2} \right) |
| 121 | \end{equation} |
| 122 | }}} |
| 123 | Let [[latex($r=0$)]] or [[latex($\eta=\frac{\pi}{2}$)]]. we have the free-fall time |
| 124 | {{{ |
| 125 | #!latex |
| 126 | \begin{equation}\ref{eq:freeFall}\tag{13} |
| 127 | \begin{aligned} |
| 128 | t_{ff}&=\left(\frac{R^{3}}{2GM_{r}(R)}\right)^{\frac{1}{2}}\frac{\pi}{2}\\ |
| 129 | &=\left(\frac{3\pi}{32G\bar{\rho}}\right)^{\frac{1}{2}} |
| 130 | \end{aligned} |
| 131 | \end{equation} |
| 132 | }}} |
| 133 | where |
| 134 | {{{ |
| 135 | #!latex |
| 136 | \begin{equation}\label{rhoBar}\tag{14} |
| 137 | \bar{\rho}=\frac{M_{r}(R)}{\frac{4\pi R^{3}}{3}} |
| 138 | \end{equation} |
| 139 | }}} |
| 140 | is the average density of the gas. |
| 141 | |
| 142 | |