Changes between Version 20 and Version 21 of SelfGravityDevel
- Timestamp:
- 03/05/12 22:11:54 (13 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
SelfGravityDevel
v20 v21 65 65 66 66 The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. 67 Using the Gauss's theorem, the gravitional acceleration $g_{r}$is given by67 Using the Gauss's theorem, the gravitional acceleration [[latex($g_{r}$)]] is given by 68 68 {{{ 69 69 #!latex … … 93 93 \end{equation} 94 94 }}} 95 Suppose the gas molecule is initially located at $r=R$. So the total energy95 Suppose the gas molecule is initially located at [[latex($r=R$)]]. So the total energy 96 96 {{{ 97 97 #!latex … … 100 100 \end{equation} 101 101 }}} 102 Now assume [[latex($M_{r}\approxM_{r}(R)$)]]. Equation (8) gives102 Now consider gas collapse. So [[latex($M_{r}= M_{r}(R)$)]]. Equation (8) gives 103 103 {{{ 104 104 #!latex … … 107 107 \end{equation} 108 108 }}} 109 Let [[latex($r=R\cos^{2}\eta$)]]. From the initial state we have [[latex($\eta(t=0)=0$)]]. So Equation (10) reduces to109 Let 110 110 {{{ 111 111 #!latex 112 \begin{equation}\label{eq:reduced}\tag{11} 112 \begin{equation}\tag{11} 113 r=R\cos^{2}\eta 114 \end{equation} 115 }}}. From the initial state we have [[latex($\eta(t=0)=0$)]]. So Equation (10) reduces to 116 {{{ 117 #!latex 118 \begin{equation}\label{eq:reduced}\tag{12} 113 119 \cos^{2}\eta\frac{d\eta}{dt}=\left(\frac{GM_{r}(R)}{2R^{3}}\right)^{\frac{1}{2}} 114 120 \end{equation} 115 121 }}} 116 Solve Equation (1 1) we have122 Solve Equation (12) we have 117 123 {{{ 118 124 #!latex 119 \begin{equation}\label{eq:sol}\tag{1 2}125 \begin{equation}\label{eq:sol}\tag{13} 120 126 t=\left(\frac{R^{3}}{2GM_{r}(R)} \right)^{\frac{1}{2}}\left(\eta+\frac{\sin2\eta}{2} \right) 121 127 \end{equation} … … 124 130 {{{ 125 131 #!latex 126 \begin{equation}\ref{eq:freeFall}\tag{1 3}132 \begin{equation}\ref{eq:freeFall}\tag{14} 127 133 \begin{aligned} 128 134 t_{ff}&=\left(\frac{R^{3}}{2GM_{r}(R)}\right)^{\frac{1}{2}}\frac{\pi}{2}\\ … … 134 140 {{{ 135 141 #!latex 136 \begin{equation}\label{rhoBar}\tag{1 4}142 \begin{equation}\label{rhoBar}\tag{15} 137 143 \rho_{0}=\frac{M_{r}(R)}{\frac{4\pi R^{3}}{3}} 138 144 \end{equation} … … 142 148 143 149 == Implementation == 144 145 150 === Uniform Density Cloud === 151 The definition of [[latex($\eta$)]] in Equation (11) can also be written as 152 {{{ 153 #!latex 154 \begin{equation}\tag{16} 155 \cos\eta=\left(\frac{\rho}{\rho_{0}} \right)^{-\frac{1}{6}} 156 \end{equation} 157 }}} 146 158 === Boundary Conditions === 147 159