Changes between Version 61 and Version 62 of SelfGravityDevel


Ignore:
Timestamp:
07/09/13 21:17:43 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • SelfGravityDevel

    v61 v62  
    66=== Poisson Equation of Self Gravity ===
    77
    8   The electric field generated by a point charge[[latex(Q)]]is
    9 
    10  [[latex(E=\frac{1}{4\pi\epsilon_{0}}\frac{Q}{r^{2}})]]
    11 
    12  On the other hand, the gravitational acceleration by a point mass of [[latex(M)]] is
    13 
    14  [[latex(g=-G\frac{M}{r^{2}})]]  [[BR]]
    15 
    16  The Poisson equation for electrostatic potential [[latex(\phi_{e})]] is
    17 
    18  [[latex(\nabla^{2}\phi=-\frac{\rho}{\epsilon_{0}})]]
     8  The electric field generated by a point charge[[latex($Q$)]]is
     9
     10 [[latex($E=\frac{1}{4\pi\epsilon_{0}}\frac{Q}{r^{2}}$)]]
     11
     12 On the other hand, the gravitational acceleration by a point mass of [[latex($M$)]] is
     13
     14 [[latex($g=-G\frac{M}{r^{2}}$)]]  [[BR]]
     15
     16 The Poisson equation for electrostatic potential [[latex($\phi_{e}$)]] is
     17
     18 [[latex($\nabla^{2}\phi=-\frac{\rho}{\epsilon_{0}}$)]]
    1919
    2020 Analytically  we can get the Poisson equation for the gravity
    2121
    22  [[latex(\nabla^{2}\phi=4\pi G\rho)]]
    23 
    24  where [[latex(\rho)]] is the mass density. This equation describes how the potential [[latex(\phi)]] is determined by the mass density distribution.
     22 [[latex($\nabla^{2}\phi=4\pi G\rho$)]]
     23
     24 where [[latex($\rho$)]] is the mass density. This equation describes how the potential [[latex($\phi$)]] is determined by the mass density distribution.
    2525
    2626For example, consider the uniform density distribution
     
    6666
    6767 The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.
    68  Using Gauss's theorem, the gravitational acceleration [[latex(g_{r})]] is given by
     68 Using Gauss's theorem, the gravitational acceleration [[latex($g_{r}$)]] is given by
    6969{{{
    7070#!latex
     
    7373\end{equation}
    7474}}}
    75  where [[latex(M_{r})]] is the mass inside [[latex(r)]]
     75 where [[latex($M_{r}$)]] is the mass inside [[latex($r$)]]
    7676{{{
    7777#!latex
     
    9494\end{equation}
    9595}}}
    96  Suppose the gas molecule is initially located at [[latex(r=R)]]. So the total energy
     96 Suppose the gas molecule is initially located at [[latex($r=R$)]]. So the total energy
    9797{{{
    9898#!latex
     
    101101\end{equation}
    102102}}}
    103  Now consider gas collapse. So [[latex(M_{r}= M_{r}(R))]]. Equation (8) gives
     103 Now consider gas collapse. So [[latex($M_{r}= M_{r}(R)$)]]. Equation (8) gives
    104104{{{
    105105#!latex
     
    115115\end{equation}
    116116}}}
    117  From the initial state we have [[latex(\eta(t=0)=0)]]. So Equation (10) reduces to
     117 From the initial state we have [[latex($\eta(t=0)=0$)]]. So Equation (10) reduces to
    118118{{{
    119119#!latex
     
    129129\end{equation}
    130130}}}
    131  Let [[latex(r=0)]] or [[latex(\eta=\frac{\pi}{2})]]. we have the free-fall time
     131 Let [[latex($r=0$)]] or [[latex($\eta=\frac{\pi}{2}$)]]. we have the free-fall time
    132132{{{
    133133#!latex
    134134\begin{equation}\ref{eq:freeFall}\tag{14}
    135135\begin{aligned}
    136  t_{ff}&=\left(\frac{R^{3}}{2GM_{r}(R)}\right)^{\frac{1}{2}}\frac{\pi}{2}\\
    137        &=\left(\frac{3\pi}{32G\rho_{0}}\right)^{\frac{1}{2}}
     136 t_{ff} & =\left(\frac{R^{3}}{2GM_{r}(R)}\right)^{\frac{1}{2}}\frac{\pi}{2}\\
     137        & =\left(\frac{3\pi}{32G\rho_{0}}\right)^{\frac{1}{2}}
    138138\end{aligned}
    139139\end{equation}
     
    151151== Implementation ==
    152152=== Uniform Density Cloud ===
    153  In this section we consider the problem of the collapse of a pressureless ([[latex(T=0)]]), uniform, initially motionless cloud which has an analytic solution.
    154 
    155  The definition of [[latex(\eta)]] in Equation (11) can also be written as
     153 In this section we consider the problem of the collapse of a pressureless ([[latex($T=0$)]]), uniform, initially motionless cloud which has an analytic solution.
     154
     155 The definition of [[latex($\eta$)]] in Equation (11) can also be written as
    156156{{{
    157157#!latex
     
    167167\end{equation}
    168168}}}
    169  Equation (17) describes the time it takes for the cloud to collapse to a density [[latex(\rho)]].
     169 Equation (17) describes the time it takes for the cloud to collapse to a density [[latex($\rho$)]].
    170170
    171171=== Boundary Conditions ===
     
    176176
    177177=== Some notes on periodic BC's and particles ===
    178 With periodic boundary conditions, we would like the total potential to be unchanged under the conversion of gas to particle.  This requires adjusting the particle potential so that it has the same constant of integration as well as being periodic.  When hypre solves for the potential, the constant of integration is a free parameter and I believe hypre adjusts it so that [[latex(<\phi>=0)]].  To calculate the potential of a point charge, we need the Greens function corresponding to
    179 
    180  [[latex(\nabla_D^2 G(x,y) = \delta^D(x-y))]]
     178With periodic boundary conditions, we would like the total potential to be unchanged under the conversion of gas to particle.  This requires adjusting the particle potential so that it has the same constant of integration as well as being periodic.  When hypre solves for the potential, the constant of integration is a free parameter and I believe hypre adjusts it so that [[latex($<\phi>=0$)]].  To calculate the potential of a point charge, we need the Greens function corresponding to
     179
     180 [[latex($\nabla_D^2 G(x,y) = \delta^D(x-y)$)]]
    181181
    182182 where D is the dimenesion of the problem.  For 3D,
    183183
    184  [[latex(G(x,y)=\frac{-1}{4\pi|x-y|})]]
     184 [[latex($G(x,y)=\frac{-1}{4\pi|x-y|}$)]]
    185185
    186186 and for 2D,
    187187
    188  [[latex(G(x,y)=\frac{\ln(|x-y|)}{2\pi})]]
     188 [[latex($G(x,y)=\frac{\ln(|x-y|)}{2\pi}$)]]
    189189
    190190 and for 1D,
    191191
    192  [[latex(G(x,y)=\frac{|x-y|}{2})]]
     192 [[latex($G(x,y)=\frac{|x-y|}{2}$)]]
    193193
    194194Now with periodic BC's, the solution to the gas potential is given by
    195195
    196  [[latex(\nabla^2 \phi = 4\pi G (\rho-\bar{\rho}))]], so the solution to the potential would actually be given by [[latex(\phi(y)=-\int_V{\frac{M\delta(x-y)-M/V}{|x-y|}dx})]] where [[latex(M)]] is the mass of the particle.  Note this is not the same as using mirror versions of the particle...  An easier way to solve this however, is to use fourier transforms. 
    197 
    198  [[latex(k^2\hat{\phi}(k)=4\pi G\hat{\rho}(k))]] with [[latex(\hat{\phi}(0)=0)]].  Now [[latex(\hat{\rho}(k))]] is just the fourier transform of a delta function times the mass, which is [[latex(M)]], so [[latex(\hat\phi(k)=\frac{4\pi GM}{k^2})]] and [[latex(\phi(x)=4 \pi G M\int{\frac{1}{k^2}e^{ikx} dk})]]
     196 [[latex($\nabla^2 \phi = 4\pi G (\rho-\bar{\rho})$)]], so the solution to the potential would actually be given by [[latex($\phi(y)=-\int_V{\frac{M\delta(x-y)-M/V}{|x-y|}dx}$)]] where [[latex($M$)]] is the mass of the particle.  Note this is not the same as using mirror versions of the particle...  An easier way to solve this however, is to use fourier transforms. 
     197
     198 [[latex($k^2\hat{\phi}(k)=4\pi G\hat{\rho}(k)$)]] with [[latex($\hat{\phi}(0)=0$)]].  Now [[latex($\hat{\rho}(k)$)]] is just the fourier transform of a delta function times the mass, which is [[latex($M$)]], so [[latex($\hat\phi(k)=\frac{4\pi GM}{k^2}$)]] and [[latex($\phi(x)=4 \pi G M\int{\frac{1}{k^2}e^{ikx} dk}$)]]
    199199
    200200 This can be discretized as
    201201
    202  [[latex(\phi(l)=\frac{4 \pi GM}{\Delta k^2} \displaystyle \sum_{j=-N/2}^{N/2}{\frac{1}{j^2}e^{2\pi ijl/N} \frac{\Delta k}{2\pi}}=\frac{4 \pi GM}{(2 \pi/L)^2}\left(\frac{2 \pi}{L}\right) \displaystyle \sum_{j=1}^{N/2}{\frac{1}{j^2}\cos(2\pi jl/N)})]]
    203 
    204  This still requires summation over many wave numbers - although the higher wave numbers have less impact because of the [[latex(k^{-2})]] dependence.  However in 2D this is lessened because there are more wave vectors in each anuli, and in 3D there is equal power in each shell.  This then, becomes an order N^6 operation :| 
     202 [[latex($\phi(l)=\frac{4 \pi GM}{\Delta k^2} \displaystyle \sum_{j=-N/2}^{N/2}{\frac{1}{j^2}e^{2\pi ijl/N} \frac{\Delta k}{2\pi}}=\frac{4 \pi GM}{(2 \pi/L)^2}\left(\frac{2 \pi}{L}\right) \displaystyle \sum_{j=1}^{N/2}{\frac{1}{j^2}\cos(2\pi jl/N)}$)]]
     203
     204 This still requires summation over many wave numbers - although the higher wave numbers have less impact because of the [[latex($k^{-2}$)]] dependence.  However in 2D this is lessened because there are more wave vectors in each anuli, and in 3D there is equal power in each shell.  This then, becomes an order N^6 operation :| 
    205205
    206206 Solutions: